Skip to main content

Towards Constructing a Suite of Multi-objective Optimization Problems with Diverse Landscapes

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13989))

Abstract

Given that real-world multi-objective optimization problems are generally constructed by combining individual functions to be optimized, it seems sensible that benchmark functions would also follow this procedure. Since the pool of functions to choose from is large and the number of function combinations increases exponentially with the number of objectives, we need a smart way to choose a reasonably sized and diverse collection of function combinations to use in benchmarking experiments. We propose a four-step approach that analyzes the landscape characteristics of all function combinations and selects only the most diverse ones to form a suite of problems. In this initial study, we test this idea on the pool of bbob functions and the case of two objectives. We provide a proof of concept for the proposed approach and its initial results. We also discuss its limitations to be addressed in future work.

A. Andova, T. Benecke and H. Ludwig—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartz-Beielstein, T., et al.: Benchmarking in optimization: best practice and open issues. CoRR abs/2007.03488 (2020). https://arxiv.org/abs/2007.03488

  2. van der Blom, K., et al.: Towards realistic optimization benchmarks: a questionnaire on the properties of real-world problems. In: GECCO 2020: Genetic and Evolutionary Computation Conference, Companion Volume, pp. 293–294. ACM (2020). https://doi.org/10.1145/3377929.3389974

  3. Brockhoff, D., Auger, A., Hansen, N., Tušar, T.: Using well-understood single-objective functions in multiobjective black-box optimization test suites. Evol. Comput. 30(2), 165–193 (2022). https://doi.org/10.1162/evco_a_00298

    Article  Google Scholar 

  4. Brockhoff, D., Tušar, T.: GECCO 2022 tutorial on benchmarking multiobjective optimizers 2.0. In: GECCO 2022: Genetic and Evolutionary Computation Conference, Companion Volume, pp. 1269–1309. ACM (2022). https://doi.org/10.1145/3520304.3533635

  5. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, pp. 825–830. IEEE (2002). https://doi.org/10.1109/CEC.2002.1007032

  6. Finck, S., Hansen, N., Ros, R., Auger, A.: Real-parameter black-box optimization benchmarking 2010: presentation of the noiseless functions. Tech. Rep. 2009/20, Research Center PPE (2009). http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf

  7. Fonseca, C.M.: Multiobjective genetic algorithms with application to control engineering problems, Ph. D. thesis, University of Sheffield (1995)

    Google Scholar 

  8. Hansen, N., Auger, A., Brockhoff, D., Tušar, T.: Anytime performance assessment in blackbox optimization benchmarking. IEEE Trans. Evol. Comput. 26(6), 1293–1305 (2022). https://doi.org/10.1109/TEVC.2022.3210897

    Article  Google Scholar 

  9. Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T., Brockhoff, D.: COCO: a platform for comparing continuous optimizers in a black-box setting. Optim. Meth. Softw. 36(1), 114–144 (2021). https://doi.org/10.1080/10556788.2020.1808977

    Article  MathSciNet  MATH  Google Scholar 

  10. Huband, S., Barone, L., While, L., Hingston, P.: A scalable multi-objective test problem toolkit. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 280–295. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_20

    Chapter  MATH  Google Scholar 

  11. Ishibuchi, H., Setoguchi, Y., Masuda, H., Nojima, Y.: Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes. IEEE Trans. Evol. Comput. 21(2), 169–190 (2017). https://doi.org/10.1109/TEVC.2016.2587749

    Article  Google Scholar 

  12. Kerschke, P., Trautmann, H.: Comprehensive feature-based landscape analysis of continuous and constrained optimization problems using the R-Package Flacco. In: Bauer, N., Ickstadt, K., Lübke, K., Szepannek, G., Trautmann, H., Vichi, M. (eds.) Applications in Statistical Computing. SCDAKO, pp. 93–123. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25147-5_7

    Chapter  Google Scholar 

  13. Liefooghe, A., Vérel, S., Lacroix, B., Zavoianu, A., McCall, J.A.W.: Landscape features and automated algorithm selection for multi-objective interpolated continuous optimisation problems. In: Genetic and Evolutionary Computation Conference, GECCO 2021, pp. 421–429. ACM (2021). https://doi.org/10.1145/3449639.3459353

  14. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1), 55–61 (2000)

    Article  MATH  Google Scholar 

  15. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.: Exploratory landscape analysis. In: 13th Annual Genetic and Evolutionary Computation Conference, GECCO 2011, pp. 829–836. ACM (2011). https://doi.org/10.1145/2001576.2001690

  16. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 8(2), 173–195 (2000). https://doi.org/10.1162/106365600568202

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks to the Species Society and the organizers of the Species Summer School 2022 for connecting us and making this research possible.

We acknowledge financial support from the Slovenian Research Agency (research project “Constrained multi-objective Optimization Based on Problem Landscape Analysis”, young researcher program and research core funding no. P2-0209). This work is also part of the Research Initiative “SmartProSys: Intelligent Process Systems for the Sustainable Production of Chemicals” funded by the Ministry for Science, Energy, Climate Protection and the Environment of the State of Saxony-Anhalt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrejaana Andova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andova, A., Benecke, T., Ludwig, H., Tušar, T. (2023). Towards Constructing a Suite of Multi-objective Optimization Problems with Diverse Landscapes. In: Correia, J., Smith, S., Qaddoura, R. (eds) Applications of Evolutionary Computation. EvoApplications 2023. Lecture Notes in Computer Science, vol 13989. Springer, Cham. https://doi.org/10.1007/978-3-031-30229-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30229-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30228-2

  • Online ISBN: 978-3-031-30229-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics