Skip to main content

RF+clust for Leave-One-Problem-Out Performance Prediction

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2023)

Abstract

Per-instance automated algorithm configuration and selection are gaining significant moments in evolutionary computation in recent years. Two crucial, sometimes implicit, ingredients for these automated machine learning (AutoML) methods are 1) feature-based representations of the problem instances and 2) performance prediction methods that take the features as input to estimate how well a specific algorithm instance will perform on a given problem instance. Non-surprisingly, common machine learning models fail to make predictions for instances whose feature-based representation is underrepresented or not covered in the training data, resulting in poor generalization ability of the models for problems not seen during training. In this work, we study leave-one-problem-out (LOPO) performance prediction. We analyze whether standard random forest (RF) model predictions can be improved by calibrating them with a weighted average of performance values obtained by the algorithm on problem instances that are sufficiently similar to the problem for which a performance prediction is sought, measured by cosine similarity in feature space. While our RF+clust approach obtains more accurate performance prediction for several problems, its predictive power crucially depends on the chosen similarity threshold as well as on the feature portfolio for which the cosine similarity is measured, thereby opening a new angle for feature selection in a zero-shot learning setting, as LOPO is termed in machine learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belkhir, N., Dréo, J., Savéant, P., Schoenauer, M.: Per instance algorithm configuration of CMA-ES with limited budget. In: GECCO, pp. 681–688 (2017)

    Google Scholar 

  2. Biau, G., Scornet, E.: A random forest guided tour. TEST 25(2), 197–227 (2016). https://doi.org/10.1007/s11749-016-0481-7

    Article  MathSciNet  MATH  Google Scholar 

  3. Bischl, B., Mersmann, O., Trautmann, H., Preuß, M.: Algorithm selection based on exploratory landscape analysis and cost-sensitive learning. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, pp. 313–320 (2012)

    Google Scholar 

  4. Cenikj, G., Lang, R.D., Engelbrecht, A.P., Doerr, C., Korošec, P., Eftimov, T.: Selector: selecting a representative benchmark suite for reproducible statistical comparison. arXiv preprint arXiv:2204.11527 (2022)

  5. Derbel, B., Liefooghe, A., Vérel, S., Aguirre, H., Tanaka, K.: New features for continuous exploratory landscape analysis based on the soo tree. In: FOGA, pp. 72–86 (2019)

    Google Scholar 

  6. Dietrich, K., Mersmann, O.: Increasing the diversity of benchmark function sets through affine recombination. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds.) International Conference on Parallel Problem Solving from Nature, pp. 590–602. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14714-2_41

  7. Eftimov, T., Jankovic, A., Popovski, G., Doerr, C., Korošec, P.: Personalizing performance regression models to black-box optimization problems. In: GECCO, pp. 669–677 (2021)

    Google Scholar 

  8. Eftimov, T., et al.: Less is more: Selecting the right benchmarking set of data for time series classification. Expert Syst. Appl. 198, 116871 (2022)

    Article  Google Scholar 

  9. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization benchmarking 2010: Experimental setup. Ph.D. thesis, INRIA (2010)

    Google Scholar 

  10. Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T., Brockhoff, D.: COCO: a platform for comparing continuous optimizers in a black-box setting. Optim. Meth. Software 36(1), 114–144 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jankovic, A., Doerr, C.: Landscape-aware fixed-budget performance regression and algorithm selection for modular CMA-ES variants. In: GECCO, pp. 841–849. ACM (2020)

    Google Scholar 

  12. Jankovic, A., Popovski, G., Eftimov, T., Doerr, C.: The impact of hyper-parameter tuning for landscape-aware performance regression and algorithm selection. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 687–696 (2021)

    Google Scholar 

  13. Kerschke, P., Trautmann, H.: The r-package flacco for exploratory landscape analysis with applications to multi-objective optimization problems. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 5262–5269. IEEE (2016)

    Google Scholar 

  14. Kostovska, A., et al.: Per-run algorithm selection with warm-starting using trajectory-based features. arXiv preprint arXiv:2204.09483 (2022)

  15. Lang, R.D., Engelbrecht, A.P.: An exploratory landscape analysis-based benchmark suite. Algorithms 14(3), 78 (2021)

    Article  MathSciNet  Google Scholar 

  16. Liang, J.J., Qu, B.Y., Suganthan, P.N.: Problem definitions and evaluation criteria for the cec 2014 special session and competition on single objective real-parameter numerical optimization. Technical report Zhengzhou, China 635, 490 (2013)

    Google Scholar 

  17. Malan, K.M., Engelbrecht, A.P.: Fitness landscape analysis for metaheuristic performance prediction. In: Richter, H., Engelbrecht, A. (eds.) Recent Advances in the Theory and Application of Fitness Landscapes. ECC, vol. 6, pp. 103–132. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-41888-4_4

    Chapter  Google Scholar 

  18. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.: Exploratory landscape analysis. In: GECCO, pp. 829–836 (2011)

    Google Scholar 

  19. Molnar, C.: Interpretable machine learning. Lulu. com (2020)

    Google Scholar 

  20. Nikolikj, A.: Rfclustgit (2023). https://github.com/anikolik/RF-clust

  21. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Petelin, G., Cenikj, G., Eftimov, T.: Tla: Topological landscape analysis for single objective continuous optimization problem instances. In: 2022 IEEE Symposium Series on Computational Intelligence (SSCI). p. In Press. IEEE (2022)

    Google Scholar 

  23. Rapin, J., Teytaud, O.: Nevergrad - A gradient-free optimization platform. https://GitHub.com/FacebookResearch/Nevergrad (2018)

  24. Škvorc, U., Eftimov, T., Korošec, P.: Understanding the problem space in single-objective numerical optimization using exploratory landscape analysis. Appl. Soft Comput. 90, 106138 (2020)

    Article  Google Scholar 

  25. Škvorc, U., Eftimov, T., Korošec, P.: Transfer learning analysis of multi-class classification for landscape-aware algorithm selection. Mathematics 10(3), 432 (2022)

    Article  Google Scholar 

  26. Stork, J., Eiben, A.E., Bartz-Beielstein, T.: A new taxonomy of global optimization algorithms. Natural Comput. 21, 219–242 (2020). https://doi.org/10.1007/s11047-020-09820-4

    Article  MathSciNet  Google Scholar 

  27. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu, Q., Yang, Y., Liu, Y., Wang, X.: An improved Latin hypercube sampling method to enhance numerical stability considering the correlation of input variables. IEEE Access 5, 15197–15205 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Slovenian Research Agency through program grant P2-0098, project grants N2-0239 and J2-4460, and a bilateral project between Slovenia and France grant No. BI-FR/23-24-PROTEUS-001 (PR-12040). Our work is also supported by ANR-22-ERCS-0003-01 project VARIATION.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Nikolikj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nikolikj, A., Doerr, C., Eftimov, T. (2023). RF+clust for Leave-One-Problem-Out Performance Prediction. In: Correia, J., Smith, S., Qaddoura, R. (eds) Applications of Evolutionary Computation. EvoApplications 2023. Lecture Notes in Computer Science, vol 13989. Springer, Cham. https://doi.org/10.1007/978-3-031-30229-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30229-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30228-2

  • Online ISBN: 978-3-031-30229-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics