Skip to main content

Using Knowledge Graphs for Performance Prediction of Modular Optimization Algorithms

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2023)

Abstract

Empirical data plays an important role in evolutionary computation research. To make better use of the available data, ontologies have been proposed in the literature to organize their storage in a structured way. However, the full potential of these formal methods to capture our domain knowledge has yet to be demonstrated. In this work, we evaluate a performance prediction model built on top of the extension of the recently proposed OPTION ontology. More specifically, we first extend the OPTION ontology with the vocabulary needed to represent modular black-box optimization algorithms. Then, we use the extended OPTION ontology, to create knowledge graphs with fixed-budget performance data for two modular algorithm frameworks, modCMA, and modDE, for the 24 noiseless BBOB benchmark functions. We build the performance prediction model using a knowledge graph embedding-based methodology. Using a number of different evaluation scenarios, we show that a triple classification approach, a fairly standard predictive modeling task in the context of knowledge graphs, can correctly predict whether a given algorithm instance will be able to achieve a certain target precision for a given problem instance. This approach requires feature representation of algorithms and problems. While the latter is already well developed, we hope that our work will motivate the community to collaborate on appropriate algorithm representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Data and Code Availability.

Our source code, data, the OPTION ontology extension, the generated KGs, and figures are available at: https://github.com/KostovskaAna/KG4AlgorithmPerformancePrediction.git.

Notes

  1. 1.

    In the rest of this paper, we will refer to the ontology classes in italic, while the relations between the classes will be written in typewriter.

References

  1. Basto-Fernandes, V., Yevseyeva, I., Deutz, A., Emmerich, M.: A survey of diversity oriented optimization: problems, indicators, and algorithms. In: Emmerich, M., Deutz, A., Schütze, O., Legrand, P., Tantar, E., Tantar, A.-A. (eds.) EVOLVE – A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation VII. SCI, vol. 662, pp. 3–23. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49325-1_1

    Chapter  Google Scholar 

  2. Chen, X., Jia, S., Xiang, Y.: A review: Knowledge reasoning over knowledge graph. Expert Syst. Appl. 141, 112948 (2020)

    Article  Google Scholar 

  3. Costabello, L., Pai, S., Le Van, C., McGrath, R., McCarthy, N., Tabacof, P.: Ampligraph: a library for representation learning on knowledge graphs (2019). Accessed 10 Oct 2019

    Google Scholar 

  4. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the AISTATS. JMLR Workshop and Conference Proceedings, pp. 249–256 (2010)

    Google Scholar 

  5. Gruber, T.: Toward principles for the design of ontologies used for knowledge sharing? Int. J. Hum Comput Stud. 43(5–6), 907–928 (1995)

    Article  Google Scholar 

  6. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions. Research Report RR-6829, INRIA (2009). https://hal.inria.fr/inria-00362633

  7. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: Proceedings of the CEC, pp. 312–317. IEEE (1996)

    Google Scholar 

  8. Kerschke, P., Trautmann, H.: The R-Package FLACCO for exploratory landscape analysis with applications to multi-objective optimization problems. In: CEC, pp. 5262–5269, July 2016. https://doi.org/10.1109/CEC.2016.7748359

  9. Kostovska, A., Vermetten, D., Doerr, C., Dzeroski, S., Panov, P., Eftimov, T.: OPTION: OPTImization Algorithm Benchmarking ONtology. In: Proceedings of the GECCO, Companion Material (2021)

    Google Scholar 

  10. Li, L., Yevseyeva, I., Basto-Fernandes, V., Trautmann, H., Jing, N., Emmerich, M.: Building and using an ontology of preference-based multiobjective evolutionary algorithms. In: Trautmann, H., et al. (eds.) EMO 2017. LNCS, vol. 10173, pp. 406–421. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54157-0_28

    Chapter  Google Scholar 

  11. López-Ibáñez, M., Branke, J., Paquete, L.: Reproducibility in evolutionary computation. ACM Trans. Evol. Learn. Optim. 1(4), 1–21 (2021)

    Article  Google Scholar 

  12. Mahmoudi, G., Muller-Schloer, C.: Semantic multi-criteria decision making semcdm. In: 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM), pp. 149–156. IEEE (2009)

    Google Scholar 

  13. de Nobel, J., Vermetten, D., Wang, H., Doerr, C., Bäck, T.: Tuning as a means of assessing the benefits of new ideas in interplay with existing algorithmic modules. In: Proceedings of the GECCO, Companion Material, pp. 1375–1384. ACM (2021)

    Google Scholar 

  14. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Renau, Q., Doerr, C., Dreo, J., Doerr, B.: Experimental data set for the study “Exploratory Landscape Analysis is Strongly Sensitive to the Sampling Strategy”, June 2020. https://doi.org/10.5281/zenodo.3886816

  16. Smith, B., et al.: Relations in biomedical ontologies. Genome Biol. 6(5), R46 (2005)

    Article  Google Scholar 

  17. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning, pp. 2071–2080. PMLR (2016)

    Google Scholar 

  19. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  20. Yaman, A., Hallawa, A., Coler, M., Iacca, G.: Presenting the ECO: evolutionary computation ontology. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10199, pp. 603–619. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55849-3_39

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Slovenian Research Agency through program grant No. P2-0103 and P2-0098, project grants N2-0239 and J2-4460, a young researcher grant to AK, and a bilateral project between Slovenia and France grant No. BI-FR/23-24-PROTEUS-001 (PR-12040), as well as the EC through grant No. 952215 (TAILOR). Our work is also supported by ANR-22-ERCS-0003-01 project VARIATION, and via a SPECIES scholarship for Ana Kostovska.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Kostovska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kostovska, A., Vermetten, D., Džeroski, S., Panov, P., Eftimov, T., Doerr, C. (2023). Using Knowledge Graphs for Performance Prediction of Modular Optimization Algorithms. In: Correia, J., Smith, S., Qaddoura, R. (eds) Applications of Evolutionary Computation. EvoApplications 2023. Lecture Notes in Computer Science, vol 13989. Springer, Cham. https://doi.org/10.1007/978-3-031-30229-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30229-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30228-2

  • Online ISBN: 978-3-031-30229-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics