Skip to main content

Improving the Effectiveness of Cyberdefense Measures

  • Chapter
  • First Online:
Cyberdefense

Abstract

We present and illustrate a recursive model which automatically organizes relationships between indicators of compromise (IoC) into richer information sets. It combines insights from natural language processing, supervised clustering, and network analysis to identify relations between IoC and thus to reduce information fragmentation. The quality of this combined information improves with every IoC that is added to the network, so that defenders can generate a more comprehensive and complete picture about a threat almost in real time and at very low transaction cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For example, a code syntax could require strings to be opened and closed by the brackets “{” and “}”, so that these reserved characters would have to be filtered.

  2. 2.

    Note that we disregard the feature IoC # in the subsequent analysis since it is collinear to timestamp.

References

  1. Albert, R., & Barabási, A. L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47.

    Article  Google Scholar 

  2. Balduzzi, D., & Tononi, G. (2008). Integrated information in discrete dynamical systems: Motivation and theoretical framework. PLoS Computational Biology, 4(6), e1000091.

    Article  Google Scholar 

  3. Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

    Article  Google Scholar 

  4. Barabási, A. L., & Bonabeau, E. (2003). Scale-free networks. Scientific American, 288(5), 60–69.

    Article  Google Scholar 

  5. Biau, G., & Scornet, E. (2016). A random forest guided tour. TEST, 25(2), 197–227.

    Article  Google Scholar 

  6. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.-U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424, 175–308.

    Article  Google Scholar 

  7. Cambria, E., & White, B. (2014). Jumping NLP curves: A review of natural language processing research. IEEE Computational Intelligence Magazine, 9(2), 48–57.

    Article  Google Scholar 

  8. Cutler, A., Cutler, D. R., & Stevens, J. R. (2012). Random forests. In C. Zhang & Y. Ma (Eds.), Ensemble Machine Learning (pp. 157–175). Boston, MA: Springer.

    Chapter  Google Scholar 

  9. Engel, D., & Malone, T. W. (2018). Integrated information as a metric for group interaction. PloS One, 13(10), e0205335.

    Article  Google Scholar 

  10. Freeman, L. C. (1978). Centrality in social networks: Conceptual clarification. Social Networks, 1(3), 215–239.

    Article  Google Scholar 

  11. Gillard, S., Percia David, D., Mermoud, A., & Maillart, T. (2022). Efficient collective action for tackling time-critical cybersecurity threats. arXiv:2206.15055

  12. Kokkonen, T., Hautamaki, J., Siltanen, J., & Hamalainen, T. (2016). Model for sharing the information of cyber security situation awareness between organizations. In Proceedings of the IEEE 23rd International Conference on Telecommunications (ICT) (pp. 1–5).

    Google Scholar 

  13. Maimon, O., & Rokach, L. (eds.). (2005). Data mining and knowledge discovery handbook. Springer Science & Business Media.

    Google Scholar 

  14. Miao, J., & Zhu, W. (2022). Precision-recall curve (PRC) classification trees. Evolutionary Intelligence, 15(3), 1545–1569.

    Article  Google Scholar 

  15. Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks, 32(3), 245–251.

    Article  Google Scholar 

  16. Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The Pagerank citation ranking: Bringing order to the web. Stanford InfoLab.

    Google Scholar 

  17. Schaeffer, S. (2007). Graph clustering. Computer Science Review, 1(1), 27–64.

    Article  Google Scholar 

  18. Strogatz, S. (2001). Exploring complex networks. Nature, 410(6825), 268–276.

    Article  Google Scholar 

  19. Sun, N., Zhang, J., Rimba, P., Gao, S., Zhang, L. Y., & Xiang, Y. (2019). Data-driven cybersecurity incident prediction: A survey. IEEE Communications Surveys & Tutorials, 21(2), 1744–1772.

    Article  Google Scholar 

  20. Watts, D. J., & Strogatz, S. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Gillard .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 430 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gillard, S., Aeschlimann, C. (2023). Improving the Effectiveness of Cyberdefense Measures. In: Keupp, M.M. (eds) Cyberdefense. International Series in Operations Research & Management Science, vol 342. Springer, Cham. https://doi.org/10.1007/978-3-031-30191-9_14

Download citation

Publish with us

Policies and ethics