Skip to main content

Implementation into OpenSees of XFEM for Analysis of Crack Propagation in Brittle Materials

  • Conference paper
  • First Online:
Proceedings of the 2022 Eurasian OpenSees Days (EOS 2022)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 326))

Included in the following conference series:

Abstract

Fracture propagation simulations by means of the traditional Finite Element Method require progressive remeshing to match the geometry of the discontinuity, which heavily increases the computational effort. To overcome this limitation, methods like the eXtended Finite Element Method (XFEM), in which element nodes are enriched through the medium of Heaviside step function multiplied by nodal shape functions, may be used. The addition of a discontinuous field allows the full crack geometry to be modelled independently of the mesh, eliminating the need to remesh altogether. In this paper OpenSees framework has been used to evaluate crack propagation in brittle materials by means of the XFEM method. Two shell-type XFEM elements have been implemented into OpenSees: a three-node triangular element and a four-node quadrangular element. These elements are an improvement of the elements with drilling degrees of freedom lately suggested by the Authors [6]. The implementation of XFEM elements implied some major modifications directly into OpenSees code to take into account the rise of number of degrees of freedom in the enriched element nodes during the analysis. The developed XFEM elements have been used to evaluate crack propagation into a plane shell subject to monotonically increasing loads. Moreover, with due tuning, the modified XFEM OpenSees code can be used to study also other problems such as material discontinuities, complex geometries and contact problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belytschko, T., Black, T.: Elastic crack growth in finite element with minimal remeshing. Int. J. Numer. Meth. Eng. 45(5), 601–620 (1999)

    Article  MATH  Google Scholar 

  2. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Meth. Eng. 46(1), 131–150 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ventura, G.: On the elimination of quadrature subcells for discontinuous functions in the eXtended finite-element method. Int. J. Numer. Meth. Eng. 66, 761–795 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ventura, G., Benvenuti, E.: Equivalent polynomials for quadrature in Heaviside function enriched elements. Int. J. Numer. Meth. Eng. 102, 688–710 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mariggiò, G., Fichera, S., Corrado, M., Ventura, G.: EQP - A 2D/3D library for integration of polynomials times step function. SoftwareX 12, 100636 (2020). https://doi.org/10.1016/j.softx.2020.100636

    Article  Google Scholar 

  6. Fichera, S., Biondi, B.: Implementation into OpenSees of triangular and quadrangular shell finite elements with drilling degrees of freedom. In: Proceedings of OpenSees Days Eurasia 2019, The Hong Kong Polytechnic University (2019)

    Google Scholar 

  7. Bathe, K.-J.: Finite Element Procedures, 2nd edn., Watertown, MA (2014)

    Google Scholar 

  8. Belytschko, T., Liu, W.K., Moran, B., Elkhodary, K.: Nonlinear Finite Elements for Continua and Structures, 2nd edn. Wiley (2014)

    Google Scholar 

  9. Belytschko, T., Gracie, R., Ventura, G.: A review of extended/generalized finite element methods for material modeling. Model Simul. Mater. Sci. Eng. 17, 1–24 (2009)

    Article  MATH  Google Scholar 

  10. Lv, J.-H., Jiao, Y.-Y., Rabczuk, T., Zhuang, X.-Y., Feng, X.-T., Tan, F.: A general algorithm for numerical integration of three-dimensional crack singularities in PU-based numerical methods. Comput. Methods Appl. Mech. Eng. 363, 112908–1 (2020)

    Google Scholar 

  11. Düster, A., Allix, O.: Selective enrichment of moment fitting and application to cut finite elements and cells. Comput. Mech. 65(2), 429–450 (2019). https://doi.org/10.1007/s00466-019-01776-2

    Article  MathSciNet  MATH  Google Scholar 

  12. Surendran, M., Natarajan, S., Palani, G., Bordas, S.: Linear smoothed extended finite element method for fatigue crack growth simulations. Eng. Fract. Mech. 206, 551–564 (2019)

    Article  Google Scholar 

  13. Müller, B., Krämer-Eis, S., Kummer, F., Oberlack, M.: A high-order discontinuous Galerkin method for compressible flows with immersed boundaries. Int. J. Numer. Methods Eng. 110(1), 3–30 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Saye, R.: High-order quadrature methods for implicitly defined surfaces and volumes in hyperrectangles. SIAM J. Sci. Comput. 37(2), A993–A1019 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Martin, A., Esnault, J.-B., Massin, P.: About the use of standard integration schemes for X-FEM in solid mechanics plasticity. Comput. Methods Appl. Mech. Eng. 283, 551–572 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sudhakar, Y., Moitinho de Almeida, J., Wall, W.: An accurate, robust, and easyto-implement method for integration over arbitrary polyhedra: application to embedded interface methods. J. Comput. Phys. 273, 393–415 (2014)

    Google Scholar 

  17. Alves, P., Barros, F., Pitangueira, R.: An object-oriented approach to the generalized finite element method. Adv. Eng. Softw. 59, 1–18 (2013)

    Article  Google Scholar 

  18. Mousavi, S., Sukumar, N.: Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput. Mech. 47(5), 535–554 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chin, E., Lasserre, J., Sukumar, N.: Modeling crack discontinuities without element-partitioning in the extended finite element method. Int. J. Numer, Methods Eng. 110(11), 1021–1048 (2017)

    Article  MathSciNet  Google Scholar 

  20. Scholz, F., Mantzaflaris, A., Jüttler, B.: First order error correction for trimmed quadrature in isogeometric analysis. In: Apel, T., Langer, U., Meyer, A., Steinbach, O. (eds.) FEM 2017. LNCSE, vol. 128, pp. 297–321. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14244-5_15

  21. Stroud, A.: Approximate Calculation of Multiple Integrals. Prentice Hall, Englewood Cliffs (1971)

    MATH  Google Scholar 

  22. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The Finite Element Method: Its Basis and Fundamentals, 6th edn. Butterworth-Heinemann (2005)

    Google Scholar 

  23. Amazigo, J., Rubenfeld, L.: Advanced Calculus and its Application to the Engineering and Physical Science. Wiley, Hoboken (1980)

    Google Scholar 

  24. Davis, P.J., Rabinowitz, P.: Methods of numerical Integration, 2nd edn. Academic Press (1984)

    Google Scholar 

  25. Song, C., Zhang, H., Wu, Y., Bao, H.: Cutting and fracturing models without remeshing. In: Chen, F., Jüttler, B. (eds.) GMP 2008. LNCS, vol. 4975, pp. 107–118. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79246-8_8

  26. Iben, H.N., O’Brien, J.F.: Generating surface crack patterns. Graph Models 71(6), 198–208 (2009). https://doi.org/10.1016/j.gmod.2008.12.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastiano Fichera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fichera, S., Biondi, B., Ventura, G. (2023). Implementation into OpenSees of XFEM for Analysis of Crack Propagation in Brittle Materials. In: Di Trapani, F., Demartino, C., Marano, G.C., Monti, G. (eds) Proceedings of the 2022 Eurasian OpenSees Days. EOS 2022. Lecture Notes in Civil Engineering, vol 326. Springer, Cham. https://doi.org/10.1007/978-3-031-30125-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30125-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30124-7

  • Online ISBN: 978-3-031-30125-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics