Skip to main content

On the Seismic Design of Ductile RC Buildings Considering Soil-Structure Interaction Effects

  • Conference paper
  • First Online:
Proceedings of the 2022 Eurasian OpenSees Days (EOS 2022)

Abstract

Soil-structure interaction (SSI) may condition the seismic performance of buildings in different ways. Previous studies show that SSI effects on structural response parameters may be either beneficial or detrimental, depending on specific characteristics of the structure, the soil, and the demand. Despite the great efforts put over the last decades into developing performance-based seismic design (PBSD) practices, engineers still rely on prescriptive code requirements for design purposes. Considering SSI effects, ASCE-7, for example, allows determining a reduced design-shear demand (\(\tilde{V }\)) that obeys the interacting soil-structure system behavior. It is calculated by reducing the conventional shear demand, \(V\), by a variation \(\Delta V\), according to \(\tilde{V }=V-\Delta V\ge \alpha V\); where \(\alpha \) controls the magnitude of the reduced demand. \(\alpha \) depends on the response modification factor (\(R\)), resulting in a more significant reduction for structures presenting limited inelastic responses than for more ductile ones. This study investigates the behavior of \(\alpha \) in ductile RC buildings while exposing the need to reflect not only the beneficial effects of SSI but the detrimental ones in determining the design-shear demand. To this end, 729 3D soil-structure systems (SSS) with different plan aspect ratios, slenderness ratios, and soil shear wave velocities were designed and analyzed using OpenSeesPy. Linear and nonlinear analysis procedures (APs) recommended at ASCE-41 are used to evaluate the response of the designed buildings. Based on these responses, a machine-learning (ML) technique is used to generate an estimation model for \(\alpha \), showing that the slenderness ratio, \({\lambda }_{str}\), the fixed-base period, \(T\), and the wave parameter, \({\sigma }_{SSI}\) are key parameters to explain up to 90% of its variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. American Society of Civil Engineers: Minimum Design Loads and Associated Criteria for Buildings and Other Structures. ASCE/SEI, Reston, Virginia (2017)

    Google Scholar 

  2. Torabi, H., Rayhani, M.T.: Three dimensional finite element modeling of seismic soil-structure interaction in soft soil. Comput. Geotech. 60, 9–19 (2014)

    Article  Google Scholar 

  3. Fu, J., Todorovska, M.I., Liang, J.: Correction factors for SSI effects predicted by simplified models: 2D versus 3D rectangular embedded foundations. Earthq. Eng. Struct. Dyn. 47(9), 1963–1983 (2018)

    Article  Google Scholar 

  4. Lu, Y., Hajirasouliha, I., Marshall, A.M.: Performance-based seismic design of flexible-base multi-storey buildings considering soil-structure interaction. Eng. Struct. 108, 90–103 (2016)

    Article  Google Scholar 

  5. Emami, A., Halabian, A.M.: Seismic response assessment of reinforced concrete structures based on displacement, force and energy criteria, considering soil-structure interaction. Aust. J. Struct. Eng. 21(1), 64–93 (2020)

    Article  Google Scholar 

  6. Khosravikia, F., Mahsuli, M., Ghannad, M.A.: Probabilistic evaluation of 2015 NEHRP soil-structure interaction provisions. J. Eng. Mech. 143(9), 1–11 (2017)

    Google Scholar 

  7. Mirzaie, F., Mahsuli, M., Ghannad, M.A.: Probabilistic analysis of soil-structure interaction effects on the seismic performance of structures. Earthq. Eng. Struct. Dyn. 46(4), 641–660 (2017)

    Article  Google Scholar 

  8. Abtahi, S., Mahsuli, M., Ghannad, M.A.: Probabilistic evaluation of soil – structure interaction effects on strength demands of shear buildings. J. Struct. Eng. 146(1), 1–12 (2020)

    Article  Google Scholar 

  9. Trombetta, N.W., Mason, H.B., Hutchinson, T.C., Zupan, J.D., Bray, J.D., Kutter, B.L.: Nonlinear soil–foundation–structure and structure–soil–structure interaction: engineering demands. J. Struct. Eng. 141(7), 1–12 (2015)

    Article  Google Scholar 

  10. McKenna, F., Scott, M.H., Fenves, G.L.: Nonlinear finite-element analysis software architecture using object composition. J. Comput. Civ. Eng. 24(1), 95–107 (2010)

    Article  Google Scholar 

  11. Zhu, M., McKenna, F., Scott, M.H.: OpenSeesPy: Python library for the OpenSees finite element framework. SoftwareX 7, 6–11 (2018)

    Article  Google Scholar 

  12. American Society of Civil Engineers: Seismic Evaluation and Retrofit of Existing Buildings, ASCE/SEI 41. ASCE/SEI, Reston, Virginia (2017)

    Google Scholar 

  13. Mylonakis, G., Gazetas, G.: Seismic soil-structure interaction: beneficial or detrimental? J. Earthq. Eng. 4(3), 277–301 (2000)

    Article  Google Scholar 

  14. American Concrete Institute: Requisitos de Reglamento para Concreto Estructural (ACI 318S-14) y Comentarios (ACI 318SR-14). ACI, Farmington Hills, MI (2015)

    Google Scholar 

  15. Pais, A., Kausel, E.: Approximate formulas for dynamic stiffnesses of rigid foundations. Soil Dyn. Earthq. Eng. 7(4), 213–227 (1988)

    Article  Google Scholar 

  16. Applied Technology Council: Seismic evaluation and retrofit of concrete buildings (Volume 1). Seismic Safety Commission, Redwood City, California (1996)

    Google Scholar 

  17. Harden, C., Hutchinson, T., Martin, G. R., Kutter, B. L.: Numerical modeling of the nonlinear cyclic response of shallow foundations. Pacific Earthquake Engineering Research Center, University of California, Berkeley (2005)

    Google Scholar 

  18. Scott, M.H., Fenves, G.L.: Plastic hinge integration methods for force-based beam-column elements. J. Struct. Eng. 132(2), 244–252 (2006)

    Article  Google Scholar 

  19. Park, R., Paulay, T.: Estructuras de Concreto Reforzado. Primera Edición. Wiley, Mexico (1983)

    Google Scholar 

  20. Haselton, C. B., Liel, A.B., Taylor, S., Deierlein, G. G.: Beam-column element model calibrated for predicting flexural response leading to global collapse of RC frame buildings. Pacific Earthquake Engineering Research Center, University of California, Berkeley (2008).

    Google Scholar 

  21. Boulanger, R.W., Curras, C.J., Kutter, B.L., Wilson, D.W., Abghari, A.: Seismic soil-pile-structure interaction experiments and analyses. J. Geotech. Geoenviron. Eng. 125(9), 750–759 (1999)

    Article  Google Scholar 

  22. Harden, C., Hutchinson, T.C., Moore, M.: Investigation into the effects of foundation uplift on simplified seismic design procedures. Earthq. Spectra 22(3), 663–692 (2006)

    Article  Google Scholar 

  23. Harden, C.W., Hutchinson, T.C.: Beam-on-nonlinear-winkler-foundation modeling of shallow, rocking-dominated footings. Earthq. Spectra 25(2), 277–300 (2009)

    Article  Google Scholar 

  24. Boore, D.M.: Orientation-independent, nongeometric-mean measures of seismic intensity from two horizontal components of motion. Bull. Seismol. Soc. Am. 100(4), 1830–1835 (2010)

    Article  Google Scholar 

  25. Bozorgnia, Y., et al.: NGA-West2 research project. Earthq. Spectra 30(3), 973–987 (2014)

    Article  MathSciNet  Google Scholar 

  26. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan-Sebastián Baquero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baquero, JS., Bairan, JM., Ledesma, A. (2023). On the Seismic Design of Ductile RC Buildings Considering Soil-Structure Interaction Effects. In: Di Trapani, F., Demartino, C., Marano, G.C., Monti, G. (eds) Proceedings of the 2022 Eurasian OpenSees Days. EOS 2022. Lecture Notes in Civil Engineering, vol 326. Springer, Cham. https://doi.org/10.1007/978-3-031-30125-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30125-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30124-7

  • Online ISBN: 978-3-031-30125-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics