Skip to main content

GASTeN: Generative Adversarial Stress Test Networks

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XXI (IDA 2023)

Abstract

Concerns with the interpretability of ML models are growing as the technology is used in increasingly sensitive domains (e.g., health and public administration). Synthetic data can be used to understand models better, for instance, if the examples are generated close to the frontier between classes. However, data augmentation techniques, such as Generative Adversarial Networks (GAN), have been mostly used to generate training data that leads to better models. We propose a variation of GANs that, given a model, generates realistic data that is classified with low confidence by a given classifier. The generated examples can be used in order to gain insights on the frontier between classes. We empirically evaluate our approach on two well-known image classification benchmark datasets, MNIST and Fashion MNIST. Results show that the approach is able to generate images that are closer to the frontier when compared to the original ones, but still realistic. Manual inspection confirms that some of those images are confusing even for humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/luispcunha/gasten.

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks, vol. 70, pp. 214–223. PMLR (2017). https://proceedings.mlr.press/v70/arjovsky17a.html

  2. Barredo Arrieta, A., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020). https://doi.org/10.1016/j.inffus.2019.12.012

    Article  Google Scholar 

  3. Brown, T.B., Carlini, N., Zhang, C., Olsson, C., Christiano, P., Goodfellow, I.: Unrestricted adversarial examples (2018). https://doi.org/10.48550/ARXIV.1809.08352

  4. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 39–57 (2016). https://doi.org/10.48550/arxiv.1608.04644

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database, pp. 248–255 (2010). https://doi.org/10.1109/CVPR.2009.5206848

  6. Dunn, I., Pouget, H., Melham, T., Kroening, D.: Adaptive generation of unrestricted adversarial inputs (2019). https://doi.org/10.48550/arxiv.1905.02463

  7. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc. (2014). https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

  8. Goodfellow, I.J.: NIPS 2016 tutorial: generative adversarial networks. CoRR abs/1701.00160 (2017). https://arxiv.org/abs/1701.00160

  9. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings (2014). https://doi.org/10.48550/arxiv.1412.6572. https://arxiv.org/abs/1412.6572v3

  10. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf

  11. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  12. Mirza, M., Osindero, S.: Conditional generative adversarial nets. CoRR abs/1411.1784 (2014). https://arxiv.org/abs/1411.1784

  13. Mitchell, M., et al.: Model cards for model reporting. In: Proceedings of the Conference on Fairness, Accountability, and Transparency, FAT* 2019, pp. 220–229. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3287560.3287596

  14. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs, vol. 70, pp. 2642–2651. PMLR (2017). https://proceedings.mlr.press/v70/odena17a.html

  15. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings (2015). https://doi.org/10.48550/arxiv.1511.06434

  16. Salimans, T., et al.: Improved techniques for training GANs, vol. 29. Curran Associates, Inc. (2016). https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf

  17. Song, Y., Shu, R., Kushman, N., Ermon, S.: Constructing unrestricted adversarial examples with generative models, vol. 31. Curran Associates, Inc. (2018). https://proceedings.neurips.cc/paper/2018/file/8cea559c47e4fbdb73b23e0223d04e79-Paper.pdf

  18. Szegedy, C., et al.: Intriguing properties of neural networks. In: 2nd International Conference on Learning Representations, ICLR 2014 - Conference Track Proceedings (2013). https://doi.org/10.48550/arxiv.1312.6199. https://arxiv.org/abs/1312.6199v4

  19. Tao, X., Hangcheng, L., Shangwei, G., Yan, G., Xiaofeng, L.: EGM: an efficient generative model for unrestricted adversarial examples. ACM Trans. Sens. Netw. (TOSN) (2021). https://doi.org/10.1145/3511893

  20. Wang, X., He, K., Hopcroft, J.E.: AT-GAN: a generative attack model for adversarial transferring on generative adversarial nets. CoRR abs/1904.07793 (2019). https://arxiv.org/abs/1904.07793

  21. Xiao, C., Li, B., Zhu, J.Y., He, W., Liu, M., Song, D.: Generating adversarial examples with adversarial networks. In: IJCAI International Joint Conference on Artificial Intelligence 2018-July, pp. 3905–3911 (2018). https://doi.org/10.48550/arxiv.1801.02610

  22. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. CoRR abs/1708.07747 (2017). https://arxiv.org/abs/1708.07747

  23. Zhao, Z., Dua, D., Singh, S.: Generating natural adversarial examples. In: 6th International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings (2017). https://doi.org/10.48550/arxiv.1710.11342

Download references

Acknowledgements

This work was partially funded by projects AISym4Med (101095387) supported by Horizon Europe Cluster 1: Health, ConnectedHealth (n.\(^{\underline{\text {o}}}\) 46858), supported by Competitiveness and Internationalisation Operational Programme (POCI) and Lisbon Regional Operational Programme (LISBOA 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) and NextGenAI - Center for Responsible AI (2022-C05i0102-02), supported by IAPMEI, and also by FCT plurianual funding for 2020–2023 of LIACC (UIDB/00027/2020_UIDP/00027/2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Cunha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cunha, L., Soares, C., Restivo, A., Teixeira, L.F. (2023). GASTeN: Generative Adversarial Stress Test Networks. In: Crémilleux, B., Hess, S., Nijssen, S. (eds) Advances in Intelligent Data Analysis XXI. IDA 2023. Lecture Notes in Computer Science, vol 13876. Springer, Cham. https://doi.org/10.1007/978-3-031-30047-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30047-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30046-2

  • Online ISBN: 978-3-031-30047-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics