Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 346))

  • 214 Accesses

Abstract

In this chapter, we define the four numbers that rule the functional calculus properties of our elliptic operators and that will help us to describe the ranges of well-posedness of our boundary value problems. We study intrinsic relations between these numbers, using the machinery developed in Chap. 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact, this case never occurs as we shall see later on.

References

  1. P. Auscher, S. Bortz, M. Egert, O. Saari, Nonlocal self-improving properties: a functional analytic approach. Tunis. J. Math. 1(2), 151–183 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Auscher, A. McIntosh, P. Tchamitchian, Heat kernels of second order complex elliptic operators and applications. J. Funct. Anal. 152(1), 22–73 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Auscher, S. Stahlhut, Remarks on functional calculus for perturbed first-order Dirac operators, in Operator Theory in Harmonic and Non-commutative Analysis, volume 240 of Operator Theory: Advances and Applications (Birkhäuser/Springer, Cham, 2014), pp. 31–43

    Google Scholar 

  4. P. Auscher, P. Tchamitchian, Calcul fontionnel précisé pour des opérateurs elliptiques complexes en dimension un (et applications à certaines équations elliptiques complexes en dimension deux). Ann. Inst. Fourier (Grenoble) 45(3), 721–778 (1995)

    Google Scholar 

  5. P. Auscher, P. Tchamitchian, Square root problem for divergence operators and related topics. Astérisque (249), viii+ 172 (1998)

    Google Scholar 

  6. J. Frehse, An irregular complex valued solution to a scalar uniformly elliptic equation. Calc. Var. Partial Differ. Equ. 33(3), 263–266 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Hofmann, S. Mayboroda, A. McIntosh, Second order elliptic operators with complex bounded measurable coefficients in Lp, Sobolev and Hardy spaces. Ann. Sci. Éc. Norm. Supér. (4) 44(5), 723–800 (2011)

    Google Scholar 

  8. A. McIntosh, A. Nahmod, Heat kernel estimates and functional calculi of − b Δ. Math. Scand. 87(2), 287–319 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. I.J. Sneiberg, Spectral properties of linear operators in interpolation families of Banach spaces. Mat. Issled. 9(2(32)), 214–229, 254–255 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Auscher, P., Egert, M. (2023). The Four Critical Numbers. In: Boundary Value Problems and Hardy Spaces for Elliptic Systems with Block Structure. Progress in Mathematics, vol 346. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-29973-5_6

Download citation

Publish with us

Policies and ethics