Skip to main content

A High-Radix Circulant Network Topology for Efficient Collective Communication

  • Conference paper
  • First Online:
Parallel and Distributed Computing, Applications and Technologies (PDCAT 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13798))

  • 521 Accesses

Abstract

Collective communication is widely used in parallel applications. Collective-communication operations, such as Broadcast, Allreduce, and Alltoall, are frequently formed by a large number of peer-to-peer (P2P) communications. The latency of P2P communication affects the overall performance of collective communication. This paper proposes using circulant network topologies for a high-radix interconnection network to improve the performance of collective communications. The circulant network topology takes advantage of an algorithmic feature that reduces the total hop counts of collective communications. The SimGrid discrete-event simulation results showed that the execution time of the collective communication on a circulant network topology improved by 25.7% and 43.1% compared with random and dragonfly network topologies with the same degree, respectively. It also enhances 40.6% and 19.5% on average compared with 3-D torus and hypercube topologies, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stunkel, C.B., et al.: The high-speed networks of the summit and sierra supercomputers. IBM J. Res. Dev. 64(3/4), 3–1 (2020)

    Google Scholar 

  2. Kim, J., Dally, W. J., Scott, S., Abts, D.: Technology-driven, highly-scalable dragonfly topology. In: ISCA, 2008, pp. 77–88 (2008)

    Google Scholar 

  3. Besta, M., Hoefler, T.: Slim fly: a cost effective low-diameter network topology. In: SC: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 348–359. IEEE (2014)

    Google Scholar 

  4. Koibuchi, M., Matsutani, H., Amano, H., Hsu, D.F., Casanova, H.: A case for random shortcut topologies for HPC interconnects. ISCA 40(3), 177–188 (2012)

    Google Scholar 

  5. Cui, K., Koibuchi, M.: Efficient two-opt collective-communication operations on low-latency random network topologies. IEICE Trans. Inf. Syst. 103(12), 2435–2443 (2020)

    Article  Google Scholar 

  6. Mizutani, K., Yamaguchi, H., Urino, Y., Koibuchi, M.: OPTWEB: a lightweight fully connected inter-FPGA network for efficient collectives. IEEE Trans. Comput. 70(6), 849–862 (2021)

    Article  MATH  Google Scholar 

  7. Bruck, J., Ho, C.-T., Kipnis, S., Upfal, E., Weathersby, D.: Efficient algorithms for all-to-all communications in multiport message-passing systems. IEEE Trans. Parallel Distrib. Syst. 8(11), 1143–1156 (1997)

    Article  Google Scholar 

  8. Liu, M.T.: Distributed loop computer networks. Adv. Comput. 17, 163–221. Elsevier (1978)

    Google Scholar 

  9. Bermond, J.-C., Comellas, F., Hsu, D.F.: Distributed loop computer-networks: a survey. J. Parallel Distrib. Comput. 24(1), 2–10 (1995)

    Article  Google Scholar 

  10. Junginger, M., Lee, Y.: The multi-ring topology-high-performance group communication in peer-to-peer networks. In: Second International Conference on Peer-to-Peer Computing, 2002, pp. 49–56 (2002)

    Google Scholar 

  11. Park, J.-H., Chwa, K.-Y.: Recursive circulant: a new topology for multicomputer networks. In: International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN), 1994, pp. 73–80 (1994)

    Google Scholar 

  12. Tang, S.-M., Wang, Y.-L., Li, C.-Y.: Generalized recursive circulant graphs. IEEE Trans. Parallel Distrib. Syst. 23(1), 87–93 (2011)

    Article  Google Scholar 

  13. Huang, X., Ramos, A.F., Deng, Y.: Optimal circulant graphs as low-latency network topologies, arXiv preprint arXiv:2201.01342 (2022)

  14. Chunduri, S., Parker, S., Balaji, P., Harms, K., Kumaran, K.: Characterization of MPI usage on a production supercomputer. In: SC: International Conference for High Performance Computing, pp. 386–400. Storage and Analysis, Networking (2018)

    Google Scholar 

  15. Open MPI: Open Source High Performance Computing. http://www.open-mpi.org/

  16. MPICH | High-Performance Portable MPI. http://www.mpich.org/

  17. MVAPICH. http://mvapich.cse.ohio-state.edu/

  18. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of collective communication operations in MPICH. Int. J. High Perform. Comput. Appl. 19(1), 49–66 (2005)

    Article  Google Scholar 

  19. Boesch, F., Tindell, R.: Circulants and their connectivities. J. Gr. Theory 8(4), 487–499 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: Versatile, scalable, and accurate simulation of distributed applications and platforms. J. Parallel Distrib. Comput. 74(10), 2899–2917 (2014)

    Article  Google Scholar 

  21. Bertsekas, D.P., Özveren, C., Stamoulis, G.D., Tseng, P., Tsitsiklis, J.N.: Optimal communication algorithms for hypercubes. J. Parallel Distrib. Comput. 11(4), 263–275 (1991)

    Article  Google Scholar 

  22. Ho, C.-T., Kao, M.-Y.: Optimal broadcast in all-port wormhole-routed hypercubes. IEEE Trans. Parallel Distrib. Syst. 6(2), 200–204 (1995)

    Article  Google Scholar 

Download references

Acknowledgment

This work was partly supported by JSPS KAKENHI Grant Number 19H01106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michihiro Koibuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, K., Koibuchi, M. (2023). A High-Radix Circulant Network Topology for Efficient Collective Communication. In: Takizawa, H., Shen, H., Hanawa, T., Hyuk Park, J., Tian, H., Egawa, R. (eds) Parallel and Distributed Computing, Applications and Technologies. PDCAT 2022. Lecture Notes in Computer Science, vol 13798. Springer, Cham. https://doi.org/10.1007/978-3-031-29927-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29927-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29926-1

  • Online ISBN: 978-3-031-29927-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics