Skip to main content

Multi-GPU Scaling of a Conservative Weakly Compressible Solver for Large-Scale Two-Phase Flow Simulation

  • Conference paper
  • First Online:
Parallel and Distributed Computing, Applications and Technologies (PDCAT 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13798))

Abstract

To address the demand for high-performance large-scale simulation of two-phase flows, a momentum-conserving weakly compressible Navier-Stokes solver with multi-GPU computation is proposed. Following the principle of consistent transport, the phase-field model and VOF method are coupled with the momentum equation respectively. Combined with the evolving pressure projection method to damp the acoustic wave, this solver aims at a robust and accurate computation of violent two-phase flows with a high density ratio, while taking advantage of fully explicit time integration of the weakly compressible Navier-Stokes equations. Factors affecting the performance and scalability of multi-GPU computing, including domain partitioning, communication hiding, and solver choice, are discussed and analyzed. Finally, the conservative solver is used to simulate the Rayleigh-Taylor instability, milk crown and liquid jet atomization problems. Accurate and delicate evolution process of the two-phase interface is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aulisa, E., Manservisi, S., Scardovelli, R., Zaleski, S.: Interface reconstruction with least-squares fit and split advection in three-dimensional cartesian geometry. J. Comput. Phys. 225(2), 2301–2319 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bell, J.B., Colella, P., Glaz, H.M.: A second-order projection method for the incompressible Navier-Stokes equations. J. Comput. Phys. 85(2), 257–283 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chiu, P.H., Lin, Y.T.: A conservative phase field method for solving incompressible two-phase flows. J. Comput. Phys. 230(1), 185–204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fuster, D., Popinet, S.: An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension. J. Comput. Phys. 374, 752–768 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ha, S., Park, J., You, D.: A GPU-accelerated semi-implicit fractional-step method for numerical solutions of incompressible Navier-Stokes equations. J. Comput. Phys. 352, 246–264 (2018)

    Article  MathSciNet  Google Scholar 

  6. Li, X., Soteriou, M.C.: High fidelity simulation and analysis of liquid jet atomization in a gaseous crossflow at intermediate weber numbers. Phys. Fluids 28(8), 082101 (2016)

    Article  Google Scholar 

  7. Lopez, J., Zanzi, C., Gomez, P., Zamora, R., Faura, F., Hernandez, J.: An improved height function technique for computing interface curvature from volume fractions. Comput. Methods Appl. Mech. Eng. 198(33–36), 2555–2564 (2009)

    Article  MATH  Google Scholar 

  8. Matsushita, S., Aoki, T.: Gas-liquid two-phase flows simulation based on weakly compressible scheme with interface-adapted AMR method. J. Comput. Phys. 445, 110605 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mirjalili, S., Ivey, C.B., Mani, A.: Comparison between the diffuse interface and volume of fluid methods for simulating two-phase flows. Int. J. Multiph. Flow 116, 221–238 (2019)

    Article  MathSciNet  Google Scholar 

  10. Popinet, S.: An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228(16), 5838–5866 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sallam, K., Aalburg, C., Faeth, G.: Breakup of round nonturbulent liquid jets in gaseous crossflow. AIAA J. 42(12), 2529–2540 (2004)

    Article  Google Scholar 

  12. Scardovelli, R., Zaleski, S.: Analytical relations connecting linear interfaces and volume fractions in rectangular grids. J. Comput. Phys. 164(1), 228–237 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Toutant, A.: General and exact pressure evolution equation. Phys. Lett. A 381(44), 3739–3742 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, X., Aoki, T.: Multi-GPU performance of incompressible flow computation by lattice Boltzmann method on GPU cluster. Parallel Comput. 37(9), 521–535 (2011)

    MathSciNet  Google Scholar 

  15. Weymouth, G.D., Yue, D.K.P.: Conservative volume-of-fluid method for free-surface simulations on cartesian-grids. J. Comput. Phys. 229(8), 2853–2865 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang, K., Aoki, T.: Weakly compressible Navier-Stokes solver based on evolving pressure projection method for two-phase flow simulations. J. Comput. Phys. 431, 110113 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang, K., Aoki, T.: A momentum-conserving weakly compressible Navier-Stokes solver for simulation of violent two-phase flows with high density ratio. Submitted (2022)

    Google Scholar 

  18. Yarin, A.L., et al.: Drop impact dynamics: splashing, spreading, receding, bouncing. Ann. Rev. Fluid Mech. 38(1), 159–192 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yokoi, K.: A density-scaled continuum surface force model within a balanced force formulation. J. Comput. Phys. 278, 221–228 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zaspel, P., Griebel, M.: Solving incompressible two-phase flows on multi-GPU clusters. Comput. Fluids 80, 356–364 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was partly supported by a Grant-in-Aid for Scientific Research (S) 19H05613, from the Japan Society for the Promotion of Science (JSPS), and Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures (JHPCN), jh200018 and jh210013, and High Performance Computing Infrastructure (HPCI) hp210129 projects, and JST SPRING, grant number JPMJSP2106. The authors thank the Global Scientific Information and Computing Center, Tokyo Institute of Technology for use of the computing resources of the TSUBAME 3.0 supercomputer and the Information Technology Center of Nagoya University for use of the computing resources of the Flow Type II supercomputer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, K., Aoki, T. (2023). Multi-GPU Scaling of a Conservative Weakly Compressible Solver for Large-Scale Two-Phase Flow Simulation. In: Takizawa, H., Shen, H., Hanawa, T., Hyuk Park, J., Tian, H., Egawa, R. (eds) Parallel and Distributed Computing, Applications and Technologies. PDCAT 2022. Lecture Notes in Computer Science, vol 13798. Springer, Cham. https://doi.org/10.1007/978-3-031-29927-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29927-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29926-1

  • Online ISBN: 978-3-031-29927-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics