Skip to main content

On Regulation

  • Chapter
  • First Online:
Essays on the Extended Evolutionary Synthesis

Part of the book series: SpringerBriefs in Evolutionary Biology ((BRIEFSEVOLUTION))

  • 74 Accesses

Abstract

Biocognitive phenomena are inherently unstable and, under normal conditions, must be constantly controlled by embedding regulators. The canonical models are blood pressure and the stream of consciousness that require persistent delicate regulation in higher organisms. Here, using the Rate Distortion Theorem of information theory, we derive a form of the Data Rate Theorem of control theory that characterizes such instability for adiabatically stationary nonergodic systems and uncover novel forms of cognitive dynamics under stochastic challenge. These range from aperiodic stochastic amplification to Yerkes-Dodson signal transduction and outright system collapse. The analysis leads toward new statistical tools for data analysis, again uncovering groupoid symmetry-breaking phase transition analogs to Fisher Zeros in physical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler, M., A. Mayo, and U. Alon, 2014. Logarithmic and power law input-output relations in sensory systems with fold-change detection. PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1003781.

  • Appleby, J., X. Mao, and A. Rodkina, 2008. Stabilization and destabilization of nonlinear differential equations by noise. IEEE Transactions on Automatic Control 53:126–132.

    Article  Google Scholar 

  • Atlan H., and I. Cohen, 1998. Immune information, self-organization, and meaning. International Immunology 10:711–718.

    Article  CAS  PubMed  Google Scholar 

  • Cover, T., and J. Thomas, 2006. Elements of Information Theory, 2nd ed. New York: Wiley.

    Google Scholar 

  • de Groot, S., and P. Mazur, 1984. Nonequilibrium Thermodynamics. New York: Dover.

    Google Scholar 

  • Diamond, D., A. Campbell, C. Park, J. Halonen, and P. Zoladz, 2007. The Temporal Dynamics Model of Emotional Memory Processing Neural Plasticity. https://doi.org/10.1155/2007/60803.

    Google Scholar 

  • Dolan, B., W. Janke, D. Johnston, and M. Stathakopoulos, 2001. Thin Fisher zeros. Journal of Physics A 34:6211–6223.

    Article  Google Scholar 

  • Dunkel, J., S. Hilbert, L. Schimansky-Geier, and P. Hanggi, 2004. Stochastic resonance in biological nonlinear evolution models. Physical Review E 69:056118.

    Article  Google Scholar 

  • Effros, M., P. Chou, and R. Gray, 1994. Variable-rate source coding theorems for stationary nonergodic sources. IEEE Transactions on Information Theory 40:1920–1925.

    Article  Google Scholar 

  • Einstein, A., 1905/1956. Investigations on the Theory of the Brownian Motion. New York: Dover Publications.

    Google Scholar 

  • Feynman, R., 2000. Lectures on Computation. New York: Westview Press.

    Google Scholar 

  • Fisher, M., 1965. Lectures in Theoretical Physics, Vol. 7. Boulder: University of Colorado Press.

    Google Scholar 

  • Jackson, D., A. Kempf, and A. Morales, 2017. A robust generalization of the Legendre transform for QFT. Journal of Physics A 50:225201.

    Article  Google Scholar 

  • Kang, Y., R. Liu, and X. Mao, 2020. Aperiodic stochastic resonance in neural information processing with Gaussian colored noise. Cognitive Neurodynamics https://doi.org/10.1007/s11571-020-09632-3.

  • Khinchin, A., 1957. Mathematical Foundations of Information Theory. New York: Dover.

    Google Scholar 

  • Laidler, K., 1987. Chemical Kinetics, 3rd ed. New York: Harper and Row.

    Google Scholar 

  • Maturana, H., and F. Varela, 1980. Autopoiesis and Cognition: The Realization of the Living. Boston: Reidel.

    Book  Google Scholar 

  • Moss, F., L. Ward, and W. Sannita, 2004. Stochastic resonance and sensory information processing: a tutorial and review of application. Clinical Neurophysiology 115:267–281.

    Article  PubMed  Google Scholar 

  • Nair, G., F. Fagnani, S. Zampieri, and R. Evans, 2007. Feedback control under data rate constraints: an overview. Proceedings of the IEEE 95, 108138.

    Article  Google Scholar 

  • Protter, P., 2005. Stochastic Integration and Dierential Equations, 2nd ed. New York: Springer.

    Book  Google Scholar 

  • Ruelle, D., 1964. Cluster property of the correlation functions of classical gases. Reviews of Modern Physics, April:580–584.

    Google Scholar 

  • Shields, P., D. Neuhoff, L. Davisson, and F. Ledrappier, 1978. The Distortion-Rate function for nonergodic sources. The Annals of Probability 6:138–143.

    Article  Google Scholar 

  • van der Groen, O., M. Tang, N. Wenderoth, and J. Mattingley, 2018. Stochastic resonance enhances the rate of evidence accumulation during combined brain stimulation and perceptual decision-making. PLOS Computational Biology 14:e1006301. https://doi.org/10.1371/journal.pcbi.1006301.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vazquez-Rodriguez, B., A. Avena-Koenigsberger, O. Sporns, A. Griffa, P. Hagmann, and H. Larralde, 2017. Stochastic resonance at criticality in a network model of the human brain. Scientific Reports 7:13020 https://doi.org/10.1038/s41598-017-13400-5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallace, R., 2005. Consciousness: A Mathematical Treatment of the Global Neuronal Workspace Model. New York: Springer.

    Google Scholar 

  • Wallace, R., 2012. Consciousness, crosstalk, and the mereological fallacy: an evolutionary perspective. Physics of Life Reviews 9:426–453.

    Article  PubMed  Google Scholar 

  • Wallace, R., 2016. Subtle noise structures as control signals in high-order biocognition. Physics Letters A 380:726–729.

    Article  CAS  Google Scholar 

  • Wallace, R., 2020. On the variety of cognitive temperatures and their symmetry-breaking dynamics. Acta Biotheoretica. https://doi.org/10.1007/s10441-019-09375-8.

  • Wallace, R., 2021. Toward a formal theory of embodied cognition. BioSystems 202:104356.

    Article  PubMed  Google Scholar 

  • Wallace, R., 2022a. Consciousness, Cognition and Crosstalk: The Evolutionary Exaptation of Nonergodic Groupoid Symmetry-Breaking. New York: Springer.

    Book  Google Scholar 

  • Wallace, R., 2022b. Formal perspectives on shared interbrain activity in social communication. Cognitive Neurodynamics. https://doi.org/10.1007/s11571-022-09811-4.

  • Wallace, R., 2022c. Deception and Delay in Organized Conflict: Essays on the Mathematical Theory of Maskirovka. New York: Springer.

    Book  Google Scholar 

  • Weinstein, A., 1996. Groupoids: unifying internal and external symmetry. Notices of the American Mathematical Association 43:744–752.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wallace, R. (2023). On Regulation. In: Essays on the Extended Evolutionary Synthesis. SpringerBriefs in Evolutionary Biology. Springer, Cham. https://doi.org/10.1007/978-3-031-29879-0_3

Download citation

Publish with us

Policies and ethics