Skip to main content

On the Extended Evolutionary Synthesis

  • Chapter
  • First Online:
Essays on the Extended Evolutionary Synthesis

Part of the book series: SpringerBriefs in Evolutionary Biology ((BRIEFSEVOLUTION))

  • 109 Accesses

Abstract

This chapter outlines a ‘mathematically elegant’ expansion of the Extended Evolutionary Synthesis that embeds modalities of direct heritage—from genes to institutional memory—within a more comprehensive milieu including environment, development, niche structure, and large deviations, all under the influence of a stochastic burdens and selection pressures that sculpt evolutionary response. The approach, based on the asymptotic limit theorems of information theory, modulo abduction of appropriate tools from statistical mechanics and nonequilibrium thermodynamics, can serve as a foundation in developing new statistical tools for the analysis of experimental and observational data related to evolutionary process across multiple scales and levels of organization.

The process of evolution is a complex set of phenomena posing a diverse array of questions that requires dissection from many angles simultaneously…[T]here is no ‘fundamental’ viewpoint or level to which we can reduce our picture…[A] fully unified view of evolutionary processes may be out of reach… — Love ( 2010 )

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adami, C., and N. Cerf, 2000. Physical complexity of symbolic sequences. Physica D 137:62–69.

    Article  Google Scholar 

  • Adami, C., C. Ofria, and T. Collier, 2000. Evolution of biological complexity. PNAS 97:4463–4468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appleby, J., X. Mao, and A. Rodkina, 2008. Stabilization and destabilization of nonlinear differential equations by noise. IEEE Transactions on Automatic Control 53:68–69.

    Article  Google Scholar 

  • Atlan H., and I. Cohen, 1998. Immune information, self-organization, and meaning. International Immunology 10:711–717.

    Article  CAS  PubMed  Google Scholar 

  • Avital, E., and E. Jablonka, 2000. Animal Traditions: Behavioral Inheritance in Evolution. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Bazil J., G. Buzzard, and A. Rundell, 2020. Modeling mitochondrial bioenergetics with integrated volume dynamics. PLoS Computational Biology 6:e1000632.

    Article  Google Scholar 

  • Brown, R., 1992. Out of line. Royal Institute Proceedings 64:207–243.

    Google Scholar 

  • Cayron, C., 2006. Groupoid of orientational variants. Acta Crystalographica Section A A62:21040.

    Google Scholar 

  • Champagnat, N., R. Ferriere, and S. Meleard, 2006. Unifying evolutionary dynamics: From individual stochastic process to macroscopic models. Theoretical Population Biology 69:297–321.

    Article  PubMed  Google Scholar 

  • Chvaja, R., 2020. Why did memetics fail? Comparative case study. Perspectives in Science 28:542–570.

    Article  Google Scholar 

  • Cimmelli, V., A. Sellitto, and D. Jou, 2014. A nonlinear thermodynamic model for a breakdown of the Onsager symmetry and the efficiency of thermoelectric conversion in nanowires. Proceedings of the Royal Society A 470:20140265.

    Article  Google Scholar 

  • Cohen, I., and D. Harel, 2007. Explaining a complex living system: dynamics, multi-scaling and emergence. Journal of the Royal Society Interface 4:175–182.

    Article  CAS  PubMed  Google Scholar 

  • Cover, T., and J. Thomas, 2006. Elements of Information Theory, 2nd ed. New York: Wiley.

    Google Scholar 

  • de Groot, S., and P. Mazur, 1984. Nonequilibrium Thermodynamics. New York: Dover.

    Google Scholar 

  • Dembo, A., and O. Zeitouni, 1998. Large Deviations and Applications, 2nd ed. New York: Springer.

    Book  Google Scholar 

  • Dieckmann, U., and R. Law, 1996. The dynamical theory of coevolution: a derivation from stochastic ecological processes. Journal of Mathematical Biology 34:579–612.

    Article  CAS  PubMed  Google Scholar 

  • Dolan, B., W. Janke, D. Johnston, and M. Stathakopoulos, 2001. Thin Fisher zeros. Journal of Physics A 34:6211–6223.

    Article  Google Scholar 

  • Dretske, F., 1994. The explanatory role of information. Philosophical Transactions of the Royal Society A 349:59–70.

    Google Scholar 

  • EES, 2020. https://extendedevolutionarysynthesis.com/resources/recommended-reading/.

  • Feynman, R. 2000. Lectures on Computation. New York: Westview Press.

    Google Scholar 

  • Fisher, M., 1965. Lectures in Theoretical Physics, Vol. 7. Boulder: University of Colorado Press.

    Google Scholar 

  • Gavrilets, S., 2010. High-dimensional fitness landscapes and speciation. In Evolution: The Extended Synthesis, ed. Massimo Pigliucci and Gerd B. Müller. Cambridge: MIT Press.

    Google Scholar 

  • Glazebrook, J., and R. Wallace, 2012. ‘The Frozen Accident’ as an evolutionary adaptation: a rate distortion theory perspective on the dynamics and symmetries of genetic coding mechanisms. Informatica 36:53–73.

    Google Scholar 

  • Gonzalez-Forero, M., and A. Gardner, 2021. A mathematical framework for evo-devo dynamics. Preprint, bioRxiv. https://doi.org/10.1101/2021.05.17.444499.

  • Gonzalez-Forero, M., and A. Gardner, 2022. How development affects evolution. Preprint, bioRxiv https://doi.org/10.1101/2021.10.20.464947.

  • Hanggi, P., and P. Jung, 1995, Colored noise in dynamical systems. Advances in Chemical Physics 89:239–326.

    CAS  Google Scholar 

  • Heine, S., 2001. Self as cultural product: an examination of East Asian and North American selves. Journal of Personality 69:881–906.

    Article  CAS  PubMed  Google Scholar 

  • Jablonka, E., and M. Lamb, 1998. Epigenetic inheritance in evolution. Journal of Evolutionary Biology 11:159–183.

    Article  Google Scholar 

  • Jackson, D., A. Kempf, and A. Morales, 2017. A robust generalization of the Legendre transform for QFT. Journal of Physics A 50:225201.

    Article  Google Scholar 

  • Jaenisch, R., and A. Bird, 2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics Supplement 33:245–254.

    Article  CAS  Google Scholar 

  • Jarzynski, C., 1997. Nonequilibrium equality for free energy differences. Physical Review Letters 78:2690–2693.

    Article  CAS  Google Scholar 

  • Jin, H., Z. Hu, and X. Zhou, 2008. A convex stochastic optimization problem arising from portfolio selection. Mathematical Finance 18:171–183.

    Article  CAS  Google Scholar 

  • Khasminskii, R., 2012. Stochastic Stability of Differential Equations. New York: Springer.

    Book  Google Scholar 

  • Khinchin, A., 1957. Mathematical Foundations of Information Theory. New York: Dover.

    Google Scholar 

  • Laidler, K., 1987. Chemical Kinetics, 3rd ed. New York: Harper and Row.

    Google Scholar 

  • Laland, K., F. Odling-Smee, and M. Feldman, 1999. Evolutionary consequences of niche construction and their implications for ecology. PNAS 96:10242–10247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laland, K., T. Uller, M. Feldman, K. Sterelny, G. Muller, A. Moczek, E. Jablonka, and J. Odling-Smee, 2014. Does evolutionary theory need a rethink? Nature 514:163–164.

    Article  Google Scholar 

  • Laland, K., T. Uller, M. Feldman, K. Sterelny, G. Muller, A. Moczek, E. Jablonka, and J. Odling-Smee, 2015. The extended evolutionary synthesis: its structure, assumptions and predictions. Proceedings of the Royal Society B 282:20151019.

    Article  PubMed  PubMed Central  Google Scholar 

  • Landau, L., and E. Lifshitz, 1980. Statistical Physics, 3rd ed. New York: Elsevier.

    Google Scholar 

  • Love, A., 2010. Rethinking the structure of evolutionary theory for an extended synthesis. In Evolution: The Extended Synthesis, ed. Massimo Pigliucci and Gerd B. Müller. Cambridge: MIT Press.

    Google Scholar 

  • Maturana, H., and F. Varela, 1980. Autopoiesis and Cognition: The Realization of the Living. Boston: Reidel.

    Book  Google Scholar 

  • Muller, G., 2017. Why an extended evolutionary synthesis is necessary. Royal Society Interface 7:20170015.

    Google Scholar 

  • Nair, G., F. Fagnani, S. Zampieri, and R. Evans, 2007. Feedback control under data rate constraints: an overview. Proceedings of the IEEE, 95:108–137.

    Google Scholar 

  • Nocedal, J., and S. Wright, 2006. Numerical Optimization, 2nd ed. New York: Springer.

    Google Scholar 

  • Odling-Smee, F., K. Laland, and M. Feldman, 2003. Niche construction: the neglected process in evolution. Monographs in Population Biology, Vol. 37. Princeton: Princeton University Press.

    Google Scholar 

  • Ofria, C., C. Adami, and T. Collier, 2003. Selective pressures on genomes in molecular evolution. Journal of Theoretical Biology 222:477–483.

    Article  CAS  PubMed  Google Scholar 

  • Pettini, M., 2007. Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics. New York: Springer.

    Book  Google Scholar 

  • Pielou, E., 1977. Mathematical Ecology. New York: John Wiley and Sons.

    Google Scholar 

  • Pielou, E., 1981. The usefulness of ecological models: a stock-taking. Quarterly Review of Biology 56:17–31.

    Article  Google Scholar 

  • Pigliucci, M., and G. Muller, 2010. Evolution: The Extended Synthesis. Cambridge: MIT Press.

    Book  Google Scholar 

  • Protter, P., 2005. Stochastic Integration and Differential Equations: A New Approach, 2nd ed. New York: Springer.

    Book  Google Scholar 

  • Robinson, S., 1993. Shadow prices for measures of effectiveness II: general model. Operations Research 41:536–548.

    Article  Google Scholar 

  • Ruelle, D., 1964. Cluster property of the correlation functions of classical gases. Reviews of Modern Physics April:580–584.

    Google Scholar 

  • Spencer, D., 1969. Overdetermined systems of linear partial differential equations. Bulletin of the American Mathematical Society 75:179–239.

    Article  Google Scholar 

  • Wallace, R., 2002. Adaptation, punctuation, and rate distortion: non-cognitive ‘learning plateaus’ in evolutionary process. Acta Biotheoretica 50:101–116.

    Article  PubMed  Google Scholar 

  • Wallace, R., 2009. Metabolic constraints on the eukaryotic transition. Origins of Life and Evolution of Biospheres 39:165–176.

    Article  Google Scholar 

  • Wallace, R., 2010. Expanding the modern synthesis. Comptes Rendus Biologies 333:701–709.

    Article  PubMed  Google Scholar 

  • Wallace, R., 2011a. On the evolution of homochirality. Comptes Rendus Biologies 334:263–268.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, R., 2011b. A new formal approach to evolutionary processes in socioeconomic systems. Journal of Evolutionary Economics 23:1–15.

    Article  Google Scholar 

  • Wallace, R., 2011c. A formal approach to evolution as self-referential language. BioSystems, 106:36–44.

    Article  PubMed  Google Scholar 

  • Wallace, R., 2012a. Consciousness, crosstalk, and the mereological fallacy: an evolutionary perspective. Physics of Life Reviews 9:426–453.

    Article  PubMed  Google Scholar 

  • Wallace, R., 2012b. Metabolic constraints on the evolution of genetic codes: did multiple ‘preaerobic’ ecosystem transitions entrain richer dialects via Serial Endosymbiosis? Transactions on Computational Systems Biology XIV, LNBI 7625:204–232.

    Article  Google Scholar 

  • Wallace, R., 2013a. A new formal perspective on ‘Cambrian explosions’. Comptes Rendus Biologies 337:1–5.

    Article  PubMed  Google Scholar 

  • Wallace, R., 2013b. A new formal approach to evolutionary process in socioeconomic systems. Journal of Evolutionary Economics 23:1–15.

    Article  Google Scholar 

  • Wallace, R., 2013c, Cognition and biology: perspectives from information theory, Cognitive Processing, 15:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, R., 2016a. The metabolic economics of environmental adaptation. Ecological Modelling 322:48–53.

    Article  CAS  Google Scholar 

  • Wallace, R., 2016b. Subtle noise structures as control signals in high-order biocognition. Physics Letters A 380:726–729.

    Article  CAS  Google Scholar 

  • Wallace, R., 2021a. How AI founders on adversarial landscapes of fog and friction. Journal of Defense Modeling and Simulation. https://doi.org/10.1177/1548512920962227.

  • Wallace, R., 2021b. Toward a formal theory of embodied cognition. BioSystems 202:104356.

    Article  PubMed  Google Scholar 

  • Wallace, R., 2022. Consciousness, Cognition and Crosstalk: The evolutionary exaptation of nonergodic groupoid symmetry-breaking. New York: Springer.

    Book  Google Scholar 

  • Wallace, R., and R.G. Wallace, 1998. Information theory, scaling laws and the thermodynamics of evolution. Journal of Theoretical Biology 192:545–555.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, R., and R.G. Wallace, 1999. Organizations, organisms and interactions: an information theory approach to biocultural evolution. BioSystems, 51:101.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, R., and D. Wallace, 2008. Punctuated equilibrium in statistical models of generalized coevolutionary resilience: how sudden ecosystem transitions can entrain both phenotype expression and Darwinian selection. Transactions on Computational Systems Biology, IX, LNBI 5121, 23–85.

    Google Scholar 

  • Wallace, R., and D. Wallace, 2009. Code, context and epigenetic catalysis in gene expression. Transactions on Computational Systems Biology, XI, LNBI 5750:283–334.

    Google Scholar 

  • Wallace, R.G., and R. Wallace, 2009. Evolutionary radiation and the spectrum of consciousness. Consciousness and Cognition 18:160–167.

    Article  PubMed  Google Scholar 

  • Wallace, R., and D. Wallace, 2011. Cultural epigenetics and the heritability of complex diseases. Transactions on Computational Systems Biology XIII, LNBI 6575: 131–170.

    Article  Google Scholar 

  • Wallace, R., and D. Wallace, 2016. Gene Expression and Its Discontents: The Social Production of Chronic Disease, 2nd ed. New York: Springer.

    Book  Google Scholar 

  • Wallace, R., D. Wallace, and R.G. Wallace, 2009. Farming Human Pathogens: Ecological Resilience and Evolutionary Process. New York: Springer.

    Book  Google Scholar 

  • Weinstein, A., 1996. Groupoids: unifying internal and external symmetry. Notices of the American Mathematical Association 43:744–752.

    Google Scholar 

  • Wu, F., F. Yang, K. Vinnakota, and D. Beard, 2007. Computer modeling of mitochondrial tricarboxylic acid cycle, oxidative phosphorylation, metabolite transport, and electrophysiology. Journal of Biological Chemistry 282:24525–24537.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wallace, R. (2023). On the Extended Evolutionary Synthesis. In: Essays on the Extended Evolutionary Synthesis. SpringerBriefs in Evolutionary Biology. Springer, Cham. https://doi.org/10.1007/978-3-031-29879-0_2

Download citation

Publish with us

Policies and ethics