Abstract
The evolution of technologies and customer expectations, coupled with market pressure, leads to the search for the permanent optimization of industrial processes. Improving plant performance is imperative to reduce costs and offer innovative, high-quality products delivered on time. In this context, the future industry intends to consolidate the best technologies and equipment to guarantee competitiveness and ever-increasing productivity while ensuring energy efficiency. This study proposes a new model that summarizes a Deep Learning based approach to real-time bearing diagnosis and prognosis. This model supports failure reduction and preventive inspection and replacement actions for the implementation of predictive maintenance. Our study aims to prove our model’s reliability and performance in diagnosis and prognosis in an industrial system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sharma, M., Kamble, S., Mani, V., Sehrawat, R., Belhadi, A., Sharma, V.: Industry 4.0 adoption for sustainability in multitier manufacturing supply chain in emerging economies. J. Cleaner Prod. 281, 125013 (2021). https://doi.org/10.1016/j.jclepro.2020.125013
Müller, J. M.: Assessing the barriers to Industry 4.0 implementation from a workers’ perspective. IFAC-PapersOnLine 52(13), 2189–2194 (2019).  https://doi.org/10.1016/j.ifacol.2019.11.530
Osman, C.C., Ghiran, A.-M.: When industry 4.0 meets process mining. Procedia Comput. Sci. 159, 2130–2136 (2019). https://doi.org/10.1016/j.procs.2019.09.386
Mourtzis, D., Zogopoulos, V., Vlachou, K.: Frugal innovation and its application in manufacturing networks. Manuf. Lett. 20, 27–29 (2019). https://doi.org/10.1016/j.mfglet.2019.04.001
Siku, K., Kwangyeol, R.: Intelligent process quality management for supporting collaboration of mold manufacturing SMEs. Procedia Manuf. 51, 381–387 (2020)
El kihel, Y.,El kihel, A., Bouyahrouzi, E.M.: Contribution of Maintenance 4.0 in sustainable development with an industrial case study. Sustainability 14(17), 11090 (2022). https://doi.org/10.3390/su141711090.
Nogales, A., GarcÃa-Tejedor, A.: A survey of electroencephalography open datasets and their applications in deep learning. Res. Square (2022). https://doi.org/10.21203/rs.3.rs-2084472/v1
Fink, O., Zio, E., Weidmann, U.: A classification framework for predicting components’ remaining useful life based on discrete-Event diagnostic data. IEEE Trans. Rel. 64(3), 1049–1056 (2015). https://doi.org/10.1109/TR.2015.2440531
Chelidze, D., Cusumano, J.P.: A dynamical systems approach to failure prognosis. J. Vib. Acoust. 126(1), 2–8 (2004). https://doi.org/10.1115/1.1640638
Kacprzynski, G., Sarlashkar, A., Roemer, M., Hess, A., Hardman, B.: Predicting remaining life by fusing the physics of failure modeling with diagnostics.  JOM J. Miner. Metals Mater. Soc. 56, 29–35 (2004). https://doi.org/10.1007/s11837-004-0029-2
Cubillo, A., Perinpanayagam, S., Esperon-Miguez, M.: A review of physics-based models in prognostics: application to gears and bearings of rotating machinery. Adv. Mech. Eng. 8(8), 168781401666466 (2016). https://doi.org/10.1177/1687814016664660
Qiu, J., Seth, B.B., Liang, S.Y., Zhang, C.: Damage mechanics approach for bearing lifetime prognostiss. Mech. Syst. Signal Process. 16(5), 817–829 (2002). https://doi.org/10.1006/mssp.2002.1483
Elkihel, A., Derouiche, I., Elkihel, Y., Bakdid, A., Gziri, H.: Artificial intelligence based on the neurons networks at the service predictive bearing, p. 10.
Ilesanmi, D., Khumbulani, M., Moses, O., Boitumelo, R., Adefemi, A.: Artificial intelligence for predictive maintenance in the railcar learning factories. Procedia Manuf. 45, 13–18 (2020). https://doi.org/10.1016/j.promfg.2020.04.032
Xu, G., Hou, D., Qi, H., Bo, L.: High-speed train wheel set bearing fault diagnosis and prognostics: a new prognostic model based on extendable useful life. Mech. Syst. Signal Process. 146, 107050 (2021)
Lin, Y., Li, X., Hu, Y.: Deep diagnostics and prognostics: an integrated hierarchical learning framework in PHM applications. Appl. Soft Comput. 72, 555–564 (2018). https://doi.org/10.1016/j.asoc.2018.01.036
Okoh, C., Roy, R., Mehnen, J.: Predictive maintenance modelling for through-life engineering services. Procedia CIRP 59, 196–201 (2017). https://doi.org/10.1016/j.procir.2016.09.033
Medjaher, K., Zerhouni, N.: Hybrid prognostic method applied to mechatronic systems. Int. J. Adv. Manuf. Technol. 69(1), 823–834 (2013). https://doi.org/10.1007/s00170-013-5064-0
Borutzky, W.: A hybrid bond graph model-based - data driven method for failure prognostic. Procedia Manuf. 42, 188–196 (2020). https://doi.org/10.1016/j.promfg.2020.02.069
Bouyahrouzi, E.M., Elkihel, A., Elkihel, Y., Embarki, S.: Real time assessment of novel predictive maintenance system based on artificial intelligence for rotating machines. J. Européen des Systèmes Automatisés 55(6), 817–823 (2023). https://doi.org/10.18280/jesa.550614
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bouyahrouzi, E.M., El Kihel, A., El Kihel, Y., Embarki, S. (2023). Defining and Implementing Predictive Maintenance Based on Artificial Intelligence for Rotating Machines. In: Motahhir, S., Bossoufi, B. (eds) Digital Technologies and Applications. ICDTA 2023. Lecture Notes in Networks and Systems, vol 669. Springer, Cham. https://doi.org/10.1007/978-3-031-29860-8_83
Download citation
DOI: https://doi.org/10.1007/978-3-031-29860-8_83
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-29859-2
Online ISBN: 978-3-031-29860-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)