Skip to main content

Defining and Implementing Predictive Maintenance Based on Artificial Intelligence for Rotating Machines

  • Conference paper
  • First Online:
Digital Technologies and Applications (ICDTA 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 669))

Included in the following conference series:

  • 928 Accesses

Abstract

The evolution of technologies and customer expectations, coupled with market pressure, leads to the search for the permanent optimization of industrial processes. Improving plant performance is imperative to reduce costs and offer innovative, high-quality products delivered on time. In this context, the future industry intends to consolidate the best technologies and equipment to guarantee competitiveness and ever-increasing productivity while ensuring energy efficiency. This study proposes a new model that summarizes a Deep Learning based approach to real-time bearing diagnosis and prognosis. This model supports failure reduction and preventive inspection and replacement actions for the implementation of predictive maintenance. Our study aims to prove our model’s reliability and performance in diagnosis and prognosis in an industrial system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sharma, M., Kamble, S., Mani, V., Sehrawat, R., Belhadi, A., Sharma, V.: Industry 4.0 adoption for sustainability in multitier manufacturing supply chain in emerging economies. J. Cleaner Prod. 281, 125013 (2021). https://doi.org/10.1016/j.jclepro.2020.125013

  2. Müller, J. M.: Assessing the barriers to Industry 4.0 implementation from a workers’ perspective. IFAC-PapersOnLine 52(13), 2189–2194 (2019).  https://doi.org/10.1016/j.ifacol.2019.11.530

  3. Osman, C.C., Ghiran, A.-M.: When industry 4.0 meets process mining. Procedia Comput. Sci. 159, 2130–2136 (2019). https://doi.org/10.1016/j.procs.2019.09.386

  4. Mourtzis, D., Zogopoulos, V., Vlachou, K.: Frugal innovation and its application in manufacturing networks. Manuf. Lett. 20, 27–29 (2019). https://doi.org/10.1016/j.mfglet.2019.04.001

    Article  Google Scholar 

  5. Siku, K., Kwangyeol, R.: Intelligent process quality management for supporting collaboration of mold manufacturing SMEs. Procedia Manuf. 51, 381–387 (2020)

    Article  Google Scholar 

  6. El kihel, Y.,El kihel, A., Bouyahrouzi, E.M.: Contribution of Maintenance 4.0 in sustainable development with an industrial case study. Sustainability 14(17), 11090 (2022). https://doi.org/10.3390/su141711090.

  7. Nogales, A., García-Tejedor, A.: A survey of electroencephalography open datasets and their applications in deep learning. Res. Square (2022). https://doi.org/10.21203/rs.3.rs-2084472/v1

    Article  Google Scholar 

  8. Fink, O., Zio, E., Weidmann, U.: A classification framework for predicting components’ remaining useful life based on discrete-Event diagnostic data. IEEE Trans. Rel. 64(3), 1049–1056 (2015). https://doi.org/10.1109/TR.2015.2440531

    Article  Google Scholar 

  9. Chelidze, D., Cusumano, J.P.: A dynamical systems approach to failure prognosis. J. Vib. Acoust. 126(1), 2–8 (2004). https://doi.org/10.1115/1.1640638

    Article  Google Scholar 

  10. Kacprzynski, G., Sarlashkar, A., Roemer, M., Hess, A., Hardman, B.: Predicting remaining life by fusing the physics of failure modeling with diagnostics.  JOM J. Miner. Metals Mater. Soc. 56, 29–35 (2004). https://doi.org/10.1007/s11837-004-0029-2

    Article  Google Scholar 

  11. Cubillo, A., Perinpanayagam, S., Esperon-Miguez, M.: A review of physics-based models in prognostics: application to gears and bearings of rotating machinery. Adv. Mech. Eng. 8(8), 168781401666466 (2016). https://doi.org/10.1177/1687814016664660

    Article  Google Scholar 

  12. Qiu, J., Seth, B.B., Liang, S.Y., Zhang, C.: Damage mechanics approach for bearing lifetime prognostiss. Mech. Syst. Signal Process. 16(5), 817–829 (2002). https://doi.org/10.1006/mssp.2002.1483

    Article  Google Scholar 

  13. Elkihel, A., Derouiche, I., Elkihel, Y., Bakdid, A., Gziri, H.: Artificial intelligence based on the neurons networks at the service predictive bearing, p. 10.

    Google Scholar 

  14. Ilesanmi, D., Khumbulani, M., Moses, O., Boitumelo, R., Adefemi, A.: Artificial intelligence for predictive maintenance in the railcar learning factories. Procedia Manuf. 45, 13–18 (2020). https://doi.org/10.1016/j.promfg.2020.04.032

    Article  Google Scholar 

  15. Xu, G., Hou, D., Qi, H., Bo, L.: High-speed train wheel set bearing fault diagnosis and prognostics: a new prognostic model based on extendable useful life. Mech. Syst. Signal Process. 146, 107050 (2021)

    Google Scholar 

  16. Lin, Y., Li, X., Hu, Y.: Deep diagnostics and prognostics: an integrated hierarchical learning framework in PHM applications. Appl. Soft Comput. 72, 555–564 (2018). https://doi.org/10.1016/j.asoc.2018.01.036

    Article  Google Scholar 

  17. Okoh, C., Roy, R., Mehnen, J.: Predictive maintenance modelling for through-life engineering services. Procedia CIRP 59, 196–201 (2017). https://doi.org/10.1016/j.procir.2016.09.033

    Article  Google Scholar 

  18. Medjaher, K., Zerhouni, N.: Hybrid prognostic method applied to mechatronic systems. Int. J. Adv. Manuf. Technol. 69(1), 823–834 (2013). https://doi.org/10.1007/s00170-013-5064-0

    Article  Google Scholar 

  19. Borutzky, W.: A hybrid bond graph model-based - data driven method for failure prognostic. Procedia Manuf. 42, 188–196 (2020). https://doi.org/10.1016/j.promfg.2020.02.069

    Article  Google Scholar 

  20. Bouyahrouzi, E.M., Elkihel, A., Elkihel, Y., Embarki, S.: Real time assessment of novel predictive maintenance system based on artificial intelligence for rotating machines. J. Européen des Systèmes Automatisés 55(6), 817–823 (2023). https://doi.org/10.18280/jesa.550614

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El Mahdi Bouyahrouzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bouyahrouzi, E.M., El Kihel, A., El Kihel, Y., Embarki, S. (2023). Defining and Implementing Predictive Maintenance Based on Artificial Intelligence for Rotating Machines. In: Motahhir, S., Bossoufi, B. (eds) Digital Technologies and Applications. ICDTA 2023. Lecture Notes in Networks and Systems, vol 669. Springer, Cham. https://doi.org/10.1007/978-3-031-29860-8_83

Download citation

Publish with us

Policies and ethics