Skip to main content

A Review of Privacy-Preserving Cryptographic Techniques Used in Blockchain Platforms

  • Conference paper
  • First Online:
Digital Technologies and Applications (ICDTA 2023)

Abstract

Due to its reliance on cryptographic techniques to ensure a high level of security, Blockchain technologies are witnessing widespread adoption in many domains ranging from decentralized Finance (DeFi), contract management, e-health, and cyber defense, to IoT among many others. However, quantum computing makes some cryptographic techniques used in the known blockchain platforms vulnerable and breakable. In this direction, this paper compares, classifies, and analyzes the cryptographic techniques used by well-known blockchain platforms, which are: Zerocash, Hyperledger Fabric, Monero, Ethereum, Bitcoin, and Hyperledger Indy. The forecited analysis is against three criteria: crypto-technique category, quantum resistance, and anonymity type. Finally, the discussion highlights the pros and cons of the studied techniques as well as presents some recommendations to improve privacy-preserving, quantum-safety, and security properties for each one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. June, P., Alonso, K.M.: Zero to Monero: First Edition a technical guide to a private digital currency; for beginners, amateurs, and experts (2018)

    Google Scholar 

  2. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

    Google Scholar 

  3. Wang, Q., Li, X., Yu, Y.: Anonymity for bitcoin from secure escrow address. IEEE Access. 6, 12336–12341 (2017)

    Article  Google Scholar 

  4. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: Proceedings of IEEE Symposium on Security and Privacy, pp. 459–474 (2014)

    Google Scholar 

  5. Semmouni, M.C., Nitaj, A., Belkasmi, M.: Bitcoin security with post quantum cryptography. In: Atig, M.F., Schwarzmann, A.A. (eds.) NETYS 2019. LNCS, vol. 11704, pp. 281–288. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31277-0_19

    Chapter  Google Scholar 

  6. Luciano, A.: ZK-STARKs — Create Verifiable Trust, even against Quantum Computers. https://medium.com/coinmonks/zk-starks-create-verifiable-trust-even-against-quantum-computers-dd9c6a2bb13d, last accessed 11 November 2022

  7. GitHub – starkware-libs/ethSTARK at ziggy. https://github.com/starkware-libs/ethSTARK/tree/ziggy#11-ziggy, last accessed 21 November 2022

  8. Boyen, X.: Attribute-based functional encryption on lattices. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 122–142. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_8

    Chapter  Google Scholar 

  9. Quantum-Safe Cryptography. https://cryptobook.nakov.com/quantum-safe-cryptography, last accessed 16 December 2020

  10. Yang, S., Huang, X.: Universal product learning with errors: a new variant of LWE for lattice-based cryptography. Theor. Comput. Sci. 915, 90–100 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ortiz, J.N., de Araujo, R.R., Aranha, D.F., Costa, S.I.R., Dahab, R.: The ring-lwe problem in lattice-based cryptography: the case of twisted embeddings. Entropy 23, 1–23 (2021)

    Article  MathSciNet  Google Scholar 

  12. Bandara, H., Herath, Y., Weerasundara, T., Alawatugoda, J.: On advances of lattice-based cryptographic schemes and their implementations. Cryptography. 6, 56 (2022)

    Article  Google Scholar 

  13. Hekkala, J., Halunen, K., Vallivaara, V.: Implementing post-quantum cryptography for developers, pp. 73–83 (2022)

    Google Scholar 

  14. Nejatollahi, H., Dutt, N., Ray, S., Regazzoni, F., Banerjee, I., Cammarota, R.: Post-quantum lattice-based cryptography implementations: a survey. ACM Comput. Surv. 51, 1–41 (2019)

    Article  Google Scholar 

  15. Alkim, E., et al.: Revisiting TESLA in the quantum random oracle model. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 143–162. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_9

    Chapter  Google Scholar 

  16. Wang, L., Shen, X., Li, J., Shao, J., Yang, Y.: Cryptographic primitives in blockchains. J. Netw. Comput. Appl. 127, 43–58 (2019)

    Article  Google Scholar 

  17. Androulaki, E., et al.: Cryptography and protocols in hyperledger fabric. In: Real-World Cryptography Conference 2017 (2017)

    Google Scholar 

  18. Alonso, K.M., Herrera Joancomartí, J.: Monero privacy in the blockchain (2017)

    Google Scholar 

  19. Irannezhad, E.: The architectural design requirements of a blockchain-based port community system. Logistics 4, 30 (2020)

    Article  Google Scholar 

  20. Shcherbakov, A.: Hyperledger Indy Public Blockchain. Presented at Hyperledger Bootcamp Russia (2019)

    Google Scholar 

  21. Nitulescu, A.: zk-SNARKs: A Gentle Introduction (2020)

    Google Scholar 

  22. Math - StarkWare Industries Ltd.

    Google Scholar 

  23. Ashur, T., Dhooghe, S.: MARVELlous: a STARK-friendly family of cryptographic primitives (2018)

    Google Scholar 

  24. Nitulescu, A.: Un recueil de SNARKs: sécurité quantique, extractabilité et confidentialité des données (2019)

    Google Scholar 

  25. Gennaro, R., Minelli, M., Nitulescu, A., Orrù, M.: Lattice-based zk-SNARKs from square span programs (2018)

    Google Scholar 

  26. Nitaj, A.: Applications De L’Algorithme LLL En Cryptographie (2016)

    Google Scholar 

  27. Milutinovic, M.: Privacy-preserving identity management (2015)

    Google Scholar 

  28. Camenisch, J., Dubovitskaya, M., Lehmann, A., Neven, G., Paquin, C., Preiss, F.-S.: Concepts and languages for privacy-preserving attribute-based authentication. In: Fischer-Hübner, S., de Leeuw, E., Mitchell, C. (eds.) IDMAN 2013. IAICT, vol. 396, pp. 34–52. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37282-7_4

    Chapter  Google Scholar 

  29. Camenisch, J., Neven, G., Rückert, M.: Fully anonymous attribute tokens from lattices. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 57–75. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9_4

    Chapter  Google Scholar 

  30. Lee, Y.K., Han, S.W., Lee, S.J., Chung, B.H., Lee, D.G.: Anonymous authentication system using group signature. In: Proceedings of the International CISIS 2009, pp. 1235–1239 (2009)

    Google Scholar 

  31. Chen, S., Zeng, P., Choo, K.-K.R., Dong, X.: Efficient ring signature and group signature schemes based on q-ary identification protocols. Comput. J. 61(4), 545–560 (2018)

    Article  Google Scholar 

  32. Verheul, E.R.: Self-blindable credential certificates from the weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 533–551. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_31

    Chapter  Google Scholar 

  33. Fiore, D., Nitulescu, A.: On the (In)Security of SNARKs in the presence of oracles. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 108–138. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4_5

    Chapter  MATH  Google Scholar 

  34. Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, additional properties and relations to other primitives. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 127–144. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16715-2_7

    Chapter  Google Scholar 

  35. Ah-Fat, P., Huth, M.: Secure multi-party computation: information flow of outputs and game theory. In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 71–92. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6_4

    Chapter  MATH  Google Scholar 

  36. Helil, N., Rahman, K.: CP-ABE access control scheme for sensitive data set constraint with hidden access policy and constraint policy. Secur. Commun. Netw. 2017, 1–13 (2017)

    Article  Google Scholar 

  37. Gorasia, N., Srikanth, R.R., Doshi, N., Rupareliya, J.: Improving security in multi authority attribute based encryption with fast decryption. Procedia Comput. Sci. 79, 632–639 (2016)

    Article  Google Scholar 

  38. Longo, R., Marcolla, C., Sala, M.: Key-policy multi-authority attribute-based encryption. In: Maletti, A. (ed.) CAI 2015. LNCS, vol. 9270, pp. 152–164. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23021-4_14

    Chapter  Google Scholar 

  39. Barj, S., Ouaddah, A., Mezrioui, A.: Technical and legal recommendations for distributed ledger technologies from a layered perspective (2023)

    Google Scholar 

  40. Bunz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: Proceedings of IEEE Symposium on Security and Privacy, May 2018, pp. 315–334 (2018)

    Google Scholar 

  41. Chillotti, I., Joye, M., Paillier, P.: Programmable bootstrapping enables efficient homomorphic inference of deep neural networks. In: Dolev, S., Margalit, O., Pinkas, B., Schwarzmann, A. (eds.) CSCML 2021. LNCS, vol. 12716, pp. 1–19. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78086-9_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Barj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barj, S., Ouaddah, A., Mezrioui, A. (2023). A Review of Privacy-Preserving Cryptographic Techniques Used in Blockchain Platforms. In: Motahhir, S., Bossoufi, B. (eds) Digital Technologies and Applications. ICDTA 2023. Lecture Notes in Networks and Systems, vol 668. Springer, Cham. https://doi.org/10.1007/978-3-031-29857-8_23

Download citation

Publish with us

Policies and ethics