Abstract
Due to its reliance on cryptographic techniques to ensure a high level of security, Blockchain technologies are witnessing widespread adoption in many domains ranging from decentralized Finance (DeFi), contract management, e-health, and cyber defense, to IoT among many others. However, quantum computing makes some cryptographic techniques used in the known blockchain platforms vulnerable and breakable. In this direction, this paper compares, classifies, and analyzes the cryptographic techniques used by well-known blockchain platforms, which are: Zerocash, Hyperledger Fabric, Monero, Ethereum, Bitcoin, and Hyperledger Indy. The forecited analysis is against three criteria: crypto-technique category, quantum resistance, and anonymity type. Finally, the discussion highlights the pros and cons of the studied techniques as well as presents some recommendations to improve privacy-preserving, quantum-safety, and security properties for each one.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
June, P., Alonso, K.M.: Zero to Monero: First Edition a technical guide to a private digital currency; for beginners, amateurs, and experts (2018)
Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
Wang, Q., Li, X., Yu, Y.: Anonymity for bitcoin from secure escrow address. IEEE Access. 6, 12336–12341 (2017)
Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: Proceedings of IEEE Symposium on Security and Privacy, pp. 459–474 (2014)
Semmouni, M.C., Nitaj, A., Belkasmi, M.: Bitcoin security with post quantum cryptography. In: Atig, M.F., Schwarzmann, A.A. (eds.) NETYS 2019. LNCS, vol. 11704, pp. 281–288. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31277-0_19
Luciano, A.: ZK-STARKs — Create Verifiable Trust, even against Quantum Computers. https://medium.com/coinmonks/zk-starks-create-verifiable-trust-even-against-quantum-computers-dd9c6a2bb13d, last accessed 11 November 2022
GitHub – starkware-libs/ethSTARK at ziggy. https://github.com/starkware-libs/ethSTARK/tree/ziggy#11-ziggy, last accessed 21 November 2022
Boyen, X.: Attribute-based functional encryption on lattices. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 122–142. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_8
Quantum-Safe Cryptography. https://cryptobook.nakov.com/quantum-safe-cryptography, last accessed 16 December 2020
Yang, S., Huang, X.: Universal product learning with errors: a new variant of LWE for lattice-based cryptography. Theor. Comput. Sci. 915, 90–100 (2022)
Ortiz, J.N., de Araujo, R.R., Aranha, D.F., Costa, S.I.R., Dahab, R.: The ring-lwe problem in lattice-based cryptography: the case of twisted embeddings. Entropy 23, 1–23 (2021)
Bandara, H., Herath, Y., Weerasundara, T., Alawatugoda, J.: On advances of lattice-based cryptographic schemes and their implementations. Cryptography. 6, 56 (2022)
Hekkala, J., Halunen, K., Vallivaara, V.: Implementing post-quantum cryptography for developers, pp. 73–83 (2022)
Nejatollahi, H., Dutt, N., Ray, S., Regazzoni, F., Banerjee, I., Cammarota, R.: Post-quantum lattice-based cryptography implementations: a survey. ACM Comput. Surv. 51, 1–41 (2019)
Alkim, E., et al.: Revisiting TESLA in the quantum random oracle model. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 143–162. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_9
Wang, L., Shen, X., Li, J., Shao, J., Yang, Y.: Cryptographic primitives in blockchains. J. Netw. Comput. Appl. 127, 43–58 (2019)
Androulaki, E., et al.: Cryptography and protocols in hyperledger fabric. In: Real-World Cryptography Conference 2017 (2017)
Alonso, K.M., Herrera JoancomartÃ, J.: Monero privacy in the blockchain (2017)
Irannezhad, E.: The architectural design requirements of a blockchain-based port community system. Logistics 4, 30 (2020)
Shcherbakov, A.: Hyperledger Indy Public Blockchain. Presented at Hyperledger Bootcamp Russia (2019)
Nitulescu, A.: zk-SNARKs: A Gentle Introduction (2020)
Math - StarkWare Industries Ltd.
Ashur, T., Dhooghe, S.: MARVELlous: a STARK-friendly family of cryptographic primitives (2018)
Nitulescu, A.: Un recueil de SNARKs: sécurité quantique, extractabilité et confidentialité des données (2019)
Gennaro, R., Minelli, M., Nitulescu, A., Orrù, M.: Lattice-based zk-SNARKs from square span programs (2018)
Nitaj, A.: Applications De L’Algorithme LLL En Cryptographie (2016)
Milutinovic, M.: Privacy-preserving identity management (2015)
Camenisch, J., Dubovitskaya, M., Lehmann, A., Neven, G., Paquin, C., Preiss, F.-S.: Concepts and languages for privacy-preserving attribute-based authentication. In: Fischer-Hübner, S., de Leeuw, E., Mitchell, C. (eds.) IDMAN 2013. IAICT, vol. 396, pp. 34–52. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37282-7_4
Camenisch, J., Neven, G., Rückert, M.: Fully anonymous attribute tokens from lattices. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 57–75. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9_4
Lee, Y.K., Han, S.W., Lee, S.J., Chung, B.H., Lee, D.G.: Anonymous authentication system using group signature. In: Proceedings of the International CISIS 2009, pp. 1235–1239 (2009)
Chen, S., Zeng, P., Choo, K.-K.R., Dong, X.: Efficient ring signature and group signature schemes based on q-ary identification protocols. Comput. J. 61(4), 545–560 (2018)
Verheul, E.R.: Self-blindable credential certificates from the weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 533–551. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_31
Fiore, D., Nitulescu, A.: On the (In)Security of SNARKs in the presence of oracles. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 108–138. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4_5
Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, additional properties and relations to other primitives. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 127–144. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16715-2_7
Ah-Fat, P., Huth, M.: Secure multi-party computation: information flow of outputs and game theory. In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 71–92. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6_4
Helil, N., Rahman, K.: CP-ABE access control scheme for sensitive data set constraint with hidden access policy and constraint policy. Secur. Commun. Netw. 2017, 1–13 (2017)
Gorasia, N., Srikanth, R.R., Doshi, N., Rupareliya, J.: Improving security in multi authority attribute based encryption with fast decryption. Procedia Comput. Sci. 79, 632–639 (2016)
Longo, R., Marcolla, C., Sala, M.: Key-policy multi-authority attribute-based encryption. In: Maletti, A. (ed.) CAI 2015. LNCS, vol. 9270, pp. 152–164. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23021-4_14
Barj, S., Ouaddah, A., Mezrioui, A.: Technical and legal recommendations for distributed ledger technologies from a layered perspective (2023)
Bunz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: Proceedings of IEEE Symposium on Security and Privacy, May 2018, pp. 315–334 (2018)
Chillotti, I., Joye, M., Paillier, P.: Programmable bootstrapping enables efficient homomorphic inference of deep neural networks. In: Dolev, S., Margalit, O., Pinkas, B., Schwarzmann, A. (eds.) CSCML 2021. LNCS, vol. 12716, pp. 1–19. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78086-9_1
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Barj, S., Ouaddah, A., Mezrioui, A. (2023). A Review of Privacy-Preserving Cryptographic Techniques Used in Blockchain Platforms. In: Motahhir, S., Bossoufi, B. (eds) Digital Technologies and Applications. ICDTA 2023. Lecture Notes in Networks and Systems, vol 668. Springer, Cham. https://doi.org/10.1007/978-3-031-29857-8_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-29857-8_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-29856-1
Online ISBN: 978-3-031-29857-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)