Skip to main content

A Novel Adjustable Constant-Force Mechanism Based on Spring and Gear Transmission

  • 345 Accesses

Part of the Mechanisms and Machine Science book series (Mechan. Machine Science,volume 124)

Abstract

This paper presents a novel adjustable constant-force mechanism (ACFM) based on spring and gear transmission. The mechanism is constructed by combining two gear-spring units and a Sarrus linkage. The significance of this design is that it can provide a constant force, which can be adjustable, over a large displacement. The adjustment of the output force is energy-free through a change in the spring position without spring preload. This work first explains the geometric constraints and desired parameters of the ACFM. Then, a numerical example is provided to illustrate the performance of the mechanism. Moreover, this paper also shows a prototype and experiments with an ACFM. It was found that the ACFM could provide a constant force of up to 20 N within a range of 140 mm, and the force error is less than 6%.

Keywords

  • Constant-force mechanism
  • Zero stiffness
  • Spring design

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boucher, G., Laliberté, T., Gosselin, C.: Mechanical design of a low-impedance 6-degree-of-freedom displacement sensor for intuitive physical human–robot interaction. ASME J. Mech. Robot. 13(2), 021002 (2021)

    CrossRef  Google Scholar 

  2. Bao, X., Wang, S., Housden, R., Hajnal, J., Rhode, K.: A constant-force end-effector with online force adjustment for robotic ultrasonography. IEEE Robot. Autom. Lett. 6(2), 2547–2554 (2021)

    CrossRef  Google Scholar 

  3. Ling, J., Ye, T., Feng, Z., Zhu, Y., Li, Y., Xiao, X.: A survey on synthesis of compliant constant force/torque mechanisms. Mech. Mach. Theory 176, 104970 (2022)

    CrossRef  Google Scholar 

  4. Wei, Y., Xu, Q.: Design of a new passive end-effector based on constant-force mechanism for robotic polishing. Robot. Comput. Integr. Manuf. 74, 102278 (2022)

    CrossRef  Google Scholar 

  5. Wang, Q., Wang, W., Zheng, L., Yun, C.: Force control-based vibration suppression in robotic grinding of large thin-wall shells. Robot. Comput. Integr. Manuf. 67, 102031 (2021)

    CrossRef  Google Scholar 

  6. Liu, C.-H., Chung, F.-M., Ho, Y.-P.: Topology optimization for design of a 3D-printed constant-force compliant finger. IEEE/ASME Trans. Mechatron. 26(4), 1828–1836 (2021)

    CrossRef  Google Scholar 

  7. Nguyen, V.L., Lin, C.-Y., Kuo, C.-H.: Gravity compensation design of planar articulated robotic arms using the gear-spring modules. ASME J. Mech. Robot. 12(3), 031014 (2020)

    CrossRef  Google Scholar 

  8. Xie, Q., Liu, S., Jiang, H.: Design of a passive constant-force mechanism based on a five-bar mechanism. Mech. Mach. Theory 143, 103662 (2020)

    CrossRef  Google Scholar 

  9. Ding, B., Zhao, J., Li, Y.: Design of a spatial constant-force end-effector for polishing/deburring operations. Int. J. Adv. Manuf. Technol. 116(11–12), 3507–3515 (2021). https://doi.org/10.1007/s00170-021-07579-1

    CrossRef  Google Scholar 

  10. Wang, P., Xu, Q.: Design and modeling of constant-force mechanisms: a survey. Mech. Mach. Theory 119, 1–21 (2018)

    CrossRef  Google Scholar 

  11. Gan, J., Xu, H., Zhang, X., Ding, H.: Design of a compliant adjustable constant-force gripper based on circular beams. Mech. Mach. Theory 173, 104843 (2022)

    CrossRef  Google Scholar 

  12. Liu, S., Peng, G., Li, Z., Li, W., Jin, K., Lin, H.: Design and experimental study of an origami-inspired constant-force mechanism. Mech. Mach. Theory 179, 105117 (2023)

    CrossRef  Google Scholar 

  13. Sánchez-Salinas, S., García-Agúndez, A., López-Martínez, J., García-Vallejo, D.: Experimental validation of a constant-force mechanism and analysis of its performance with a calibrated multibody model. Mech. Mach. Theory 173, 104819 (2022)

    CrossRef  Google Scholar 

  14. Jenuwine, J.G., Midha, A.: Synthesis of single-input and multiple-output port mechanisms with springs for specified energy absorption. ASME J. Mech. Des. 116(3), 937–943 (1994)

    CrossRef  Google Scholar 

  15. Li, M., Cheng, W.: Design and experimental validation of a large-displacement constant-force mechanism. ASME J. Mech. Robot. 10(5), 051007 (2018)

    CrossRef  MathSciNet  Google Scholar 

  16. Liu, Y., Yu, D.-P., Yao, J.: Design of an adjustable cam based constant force mechanism. Mech. Mach. Theory 103, 85–97 (2016)

    CrossRef  Google Scholar 

  17. Sanchez-Salinas, S., Nunez-Torres, C., Lopez-Martinez, J., Garcia-Vallejo, D., Muyor, J.M.: Design and analysis of a constant-force bench press. Mech. Mach. Theory 142, 103612 (2019)

    CrossRef  Google Scholar 

  18. Nguyen, V.L.: Realization of a gear-spring balancer with variable payloads and its application to serial robots. ASME J. Mech. Robot. 15(4), 041013 (2022)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vu Linh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, V.L. (2023). A Novel Adjustable Constant-Force Mechanism Based on Spring and Gear Transmission. In: Laribi, M.A., Nelson, C.A., Ceccarelli, M., Zeghloul, S. (eds) New Advances in Mechanisms, Transmissions and Applications. MeTrApp 2023. Mechanisms and Machine Science, vol 124. Springer, Cham. https://doi.org/10.1007/978-3-031-29815-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29815-8_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29814-1

  • Online ISBN: 978-3-031-29815-8

  • eBook Packages: EngineeringEngineering (R0)