Skip to main content

Simulation-Based Comparative Study and Selection of Real-Time Controller for 3-PRRR Cartesian Parallel Manipulator

  • Conference paper
  • First Online:
New Advances in Mechanisms, Transmissions and Applications (MeTrApp 2023)

Abstract

This paper describes a simulation-based study in MATLAB/Simulink to select an appropriate controller for the 3-PRRR (P – Prismatic, R – Revolute) Cartesian Parallel Manipulator (CPM) suitable for lower limb rehabilitation therapies. The dynamic performance of the CPM is incorporated into the simulation model through the derived inverse kinematic equations and assigning the dynamic parameters of the CPM through SimMechanics in MATLAB. This study compares the performance accuracy of the Proportional Integral Derivative (PID) controller, Sliding Mode Control (SMC), and Model Predictive Controller (MPC) to enable real-time tracking of the end effector. It is intended to implement the controller with the least error to the 3-PRRR hardware for superior tracking efficiency of the desired trajectory. Finally, the effectiveness of the 3-PRRR CPM for lower limb rehabilitation with the proposed motion controller is simulated and analyzed in Simulink.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mervin Joe, T., Gaurav, M., Sudheer, A. P., Joy, M. L.: Modelling and analysis of 3-PSS parallel kinematic mechanism. In: Sen, D., Mohan, S., Ananthasuresh, G. K. (eds.) Mechanism and Machine Science. LNME, pp. 639–655. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-4477-4_46

    Chapter  Google Scholar 

  2. Mohan, S., Mohanta, J.K., Kurtenbach, S., Paris, J., Corves, B., Huesing, M.: Design, development and control of a 2PRP-2PPR planar parallel manipulator for lower limb rehabilitation therapies. Mech. Mach. Theory 112, 272–294 (2017). https://doi.org/10.1016/j.mechmachtheory.2017.03.001

    Article  Google Scholar 

  3. Dong, M., et al.: State of the art in parallel ankle rehabilitation robot: a systematic review. J. Neuroeng. Rehabil. 18, 1–15 (2021). https://doi.org/10.1186/s12984-021-00845-z

    Article  Google Scholar 

  4. John, I., Mohan, S., Rybak, L.: Numerical investigations, development and control of a cartesian (3-PRRR) parallel manipulator. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 236, 8635–8649 (2022). https://doi.org/10.1177/09544062221086856

    Article  Google Scholar 

  5. Thomas, M.J., George, S., Sreedharan, D., Joy, M.L., Sudheer, A.P.: Dynamic modeling, system identification and comparative study of various control strategies for a spatial parallel manipulator. J. Syst. Control Eng. 236, 1–24 (2021). https://doi.org/10.1177/09596518211032075

    Article  Google Scholar 

  6. Harandi, M.R.J., Khalilpour, S.A., Taghirad, H.D., Romero, J.G.: Adaptive control of parallel robots with uncertain kinematics and dynamics. Mech. Syst. Sig. Process. 157, 1–13 (2021). https://doi.org/10.1016/j.ymssp.2021.107693

  7. Truong, T.N., Kang, H.J., Le, T.D.: Adaptive neural sliding mode control for 3-DOF planar parallel manipulators. In: ACM International Conference Proceeding Series, pp. 1–6 (2019). https://doi.org/10.1145/3386164.3387261

  8. Zhang, M., et al.: Adaptive proportional-derivative sliding mode control law with improved transient performance for underactuated overhead crane systems. IEEE/CAA J. Autom. Sinica. 5, 683–690 (2018). https://doi.org/10.1109/JAS.2018.7511072

    Article  MathSciNet  Google Scholar 

  9. Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: toward safe learning in control. Ann. Rev. Control Rob. Auton. Syst. 3, 269–296 (2020). https://doi.org/10.1146/annurev-control-090419-075625

    Article  Google Scholar 

  10. Karamanakos, P., Geyer, T.: Guidelines for the design of finite control set model predictive controllers. IEEE Trans. Power Electron. 35, 7434–7450 (2020). https://doi.org/10.1109/TPEL.2019.2954357

    Article  Google Scholar 

  11. Abouaïssa, H., Chouraqui, S.: On the control of robot manipulator: a model-free approach. J. Comput. Sci. 31, 6–16 (2019). https://doi.org/10.1016/j.jocs.2018.12.011

    Article  MathSciNet  Google Scholar 

  12. Dumas, C., Caro, S., Garnier, S., Furet, B.: Joint stiffness identification of six-revolute industrial serial robots. Rob. Comput. Integr. Manuf. 27, 881–888 (2011). https://doi.org/10.1016/j.rcim.2011.02.003

    Article  Google Scholar 

  13. Pan, X., Tian, Y., Wang, H., Hu, M.: Static stiffness modeling of the prismatic joint of a modular reconfigurable robot. In: 2017 IEEE International Conference on Robotics and Biomimetics, ROBIO 2017, pp. 2468–2473 (2018). https://doi.org/10.1109/ROBIO.2017.8324790

  14. Sunilkumar, P., Choudhury, R., Mohan, S., Rybak, L.: Dynamics and motion control of a three degree of freedom 3-PRRR parallel manipulator. In: Pisla, D., Corves, B., Vaida, C. (eds.) EuCoMeS 2020. MMS, vol. 89, pp. 103–111. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55061-5_13

    Chapter  Google Scholar 

Download references

Acknowledgements

This research work is partly assisted by the state assignment of Ministry of Science and Higher Education of the Russian Federation under Grant FZWN-2020-0017, and partly assisted by the Council of Scientific and Industrial Research (CSIR), India, project number 22(0829)/19/EMR-II. Further, the first author’s postdoctoral fellowship is financially supported by the IIT Palakkad Technology Ihub Foundation (IPTIF), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mervin Joe Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thomas, M.J., Mohan, S., Perevuznik, V., Rybak, L. (2023). Simulation-Based Comparative Study and Selection of Real-Time Controller for 3-PRRR Cartesian Parallel Manipulator. In: Laribi, M.A., Nelson, C.A., Ceccarelli, M., Zeghloul, S. (eds) New Advances in Mechanisms, Transmissions and Applications. MeTrApp 2023. Mechanisms and Machine Science, vol 124. Springer, Cham. https://doi.org/10.1007/978-3-031-29815-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29815-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29814-1

  • Online ISBN: 978-3-031-29815-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics