Skip to main content

A Requirements Engineering Perspective to AI-Based Systems Development: A Vision Paper

  • Conference paper
  • First Online:
Requirements Engineering: Foundation for Software Quality (REFSQ 2023)

Abstract

Context and motivation: AI-based systems (i.e., systems integrating some AI model or component) are becoming pervasive in society. A number of characteristics of AI-based systems challenge classical requirements engineering (RE) and raise questions yet to be answered. Question: This vision paper inquires the role that RE should play in the development of AI-based systems with a focus on three areas: roles involved, requirements’ scope and non-functional requirements. Principal Ideas: The paper builds upon the vision that RE shall become the cornerstone in AI-based system development and proposes some initial ideas and roadmap for these three areas. Contribution: Our vision is a step towards clarifying the role of RE in the context of AI-based systems development. The different research lines outlined in the paper call for further research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Other authors are more specific and talk about RE for machine learning (ML) systems. In this paper, we have adopted the widest AI perspective, which includes ML.

References

  1. Ahmad, K., Bano, M., Abdelrazek, M., Arora, C., Grundy, J.: What’s up with requirements engineering for artificial intelligence systems? RE 1–12 (2021)

    Google Scholar 

  2. Balasubramaniam, N., Kauppinen, M., Hiekkanen, K., Kujala, S.: Transparency and explainability of AI systems: ethical guidelines in practice. In: Gervasi, V., Vogelsang, A. (eds.) REFSQ 2022. LNCS, vol. 13216, pp. 3–18. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98464-9_1

  3. Berry, D.M.: Requirements engineering for artificial intelligence: what is a requirements specification for an artificial intelligence? In: Gervasi, V., Vogelsang, A. (eds.) REFSQ 2022. LNCS, vol. 13216, pp. 19–25. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98464-9_2

  4. Burton, S., Gauerhof, L.,  Heinzemann, C.: Making making the case for safety of machine learning in highly automated driving. In: SAFECOMP, pp.  5–16 (2017)

    Google Scholar 

  5. Duboc, L., Penzenstadler, B., Porras, J., et al.: Requirements engineering for sustainability: an awareness framework for designing software systems for a better tomorrow. Requirements Eng. 25, 469–492 (2020)

    Article  Google Scholar 

  6. Foidl, H., Felderer, M., Ramler, R.: Data smells: categories, causes and consequences, and detection of suspicious data in AI-based systems. In: CAIN, pp. 229–239 (2022)

    Google Scholar 

  7. Franch, X., Glinz, M., Méndez, D., Seyff, N.: A Study about the knowledge and use of requirements engineering standards in industry. IEEE Trans. Software Eng. 48(9), 3310–3325 (2022)

    Article  Google Scholar 

  8. Franch, X., Henriksson, A., Ralyté, J., Zdravkovic, J.: Data-driven agile requirements elicitation through the lenses of situational method engineering. In: RE@Next, pp.  402–407 (2020)

    Google Scholar 

  9. Franch, X., Martínez-Fernández, S., Ayala, C., Gómez, C.: Architectural decisions in ai-based systems: an ontological view. In: QUATIC, pp. 18–27 (2022)

    Google Scholar 

  10. Mohammad Habibullah, K.,  Gay, G.,  Horkoff, J.: Non-Functional Requirements for Machine Learning: An Exploration of System Scope and Interest. CoRR abs/2203.11063 (2022)

    Google Scholar 

  11. Mohammad Habibullah, K., Horkoff, J.: Non-functional requirements for machine learning: understanding current use and challenges in industry. In: RE:, pp. 13–23 (2021)

    Google Scholar 

  12. Heyn, H.-M., Knauss, E., Pir Muhammad, A., et al.: Requirement engineering challenges for AI-intense systems development. In: WAIN, pp. 89–96 (2021)

    Google Scholar 

  13. Horkoff, J.: Non-functional requirements for machine learning: challenges and new directions. In: RE, pp.  386–391 (2019)

    Google Scholar 

  14. The International Requirements Engineering Board: IREB Certified Professional for Requirements Engineering – Foundation Level – Syllabus, v. 3.1.0 (2022)

    Google Scholar 

  15. ISO/IEC 25010:2011. Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — System and software quality models

    Google Scholar 

  16. Ishikawa, F., Yoshioka, N.: How do Engineers perceive difficulties in engineering of machine-learning systems' questionnaire survey. In: CESSER-IP, pp. 2–9 (2019)

    Google Scholar 

  17. Jurisica, I., Mylopoulos, J., Yu, E.: Ontologies for knowledge management: an information systems perspective. Knowl. Inf. Syst. 6(4), 380–401 (2004). https://doi.org/10.1007/s10115-003-0135-4

    Article  Google Scholar 

  18. Khomh, F., Adams, B., Cheng, J., Fokaefs, M., Antoniol, G.: Software engineering for machine-learning applications: the road ahead. IEEE Softw. 35(5), 81–84 (2018)

    Article  Google Scholar 

  19. Kuwajima, H., Yasuoka, H., Nakae, T.: Engineering problems in machine learning systems. Mach. Learn. 109(5), 1103–1126 (2020)

    Article  MathSciNet  Google Scholar 

  20. Lwakatare. L.E., Raj,  A., Crnkovic, I., Bosch, J., Holmström Olsson, H.: Large-large-scale machine learning systems in real-world industrial settings: a review of challenges and solu-tions. Inf. Software Technol. 127, 106368 (2020)

    Google Scholar 

  21. Martínez-Fernández, S., Franch, X., Jedlitschka, A., Oriol, M., Trendowicz, A.: Developing and operating artificial intelligence models in trustworthy autonomous systems. In: Cherfi, S., Perini, A., Nurcan, S. (eds.) RCIS 2021. LNBIP, vol. 415, pp. 221–229. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75018-3_14

  22. Martínez-Fernández, S., Bogner, J., Franch, X.,  et al.: Software engineering for AI-based systems: a survey. ACM Trans. Software Eng. Methodol. 31(2), 37e:1–37e:59 (2022)

    Google Scholar 

  23. Mitchell, M., Wu, S., et al.: Model cards for model reporting. In: FAT*, pp. 220–229 (2019)

    Google Scholar 

  24. Nalchigar, S., Yu, E., Keshavjee, K.: Modeling machine learning requirements from three perspectives: a case report from the healthcare domain. Requirements Eng. 26(2), 237–254 (2021)

    Article  Google Scholar 

  25. Paech, B.: What is a requirements engineer? IEEE Softw. 25(4), 16–17 (2008)

    Article  Google Scholar 

  26. Pei, Z., Liu, L., Wang, C., Wang, J.: Requirements engineering for machine learning: a review and reflection. In: REW, pp. 166–175 (2022)

    Google Scholar 

  27. Pohl, K.: Requirements Engineering - Fundamentals, Principles, and Techniques. Springer (2010). https://doi.org/10.1007/978-3-642-12578-2

  28. Siebert, J., et al.: Towards towards guidelines for assessing qualities of machine learning systems. In: Shepperd, M., Brito e Abreu, F., Rodrigues da Silva, A., Pérez-Castillo, R. (eds.) QUATIC 2020. CCIS, vol. 1266, pp. 17–31. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58793-2_2

  29. Tuncali, C.E., Fainekos, G., Prokhorov, D., Ito, H., Kapinski, J.: Requirements-driven test generation for autonomous vehicles with machine learning components. IEEE Transactions on Intelligent Vehicles 5(2), 265–280 (2020)

    Article  Google Scholar 

  30. Valente, L., Feijó, B., Leite, J.C.S.P.: Mapping quality requirements for pervasive mobile games. Requirements Eng. 22(1), 137–165 (2017)

    Article  Google Scholar 

  31. Villamizar, H., Escovedo, T., Kalinowski, M.: Requirements engineering for machine learning: a systematic mapping study. In: SEAA, pp. 29–36 (2021)

    Google Scholar 

  32. Vogelsang, A., Borg, M.: Requirements engineering for machine learning: perspectives from data scientists. In: REW, pp. 245–251 (2019)

    Google Scholar 

Download references

Acknowledgments

This paper is part of the project TED2021-130923B-I00, funded by MCIN/AEI/https://doi.org/10.13039/501100011033 and the European Union “NextGenerationEU”/PRTR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Franch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Franch, X., Jedlitschka, A., Martínez-Fernández, S. (2023). A Requirements Engineering Perspective to AI-Based Systems Development: A Vision Paper. In: Ferrari, A., Penzenstadler, B. (eds) Requirements Engineering: Foundation for Software Quality. REFSQ 2023. Lecture Notes in Computer Science, vol 13975. Springer, Cham. https://doi.org/10.1007/978-3-031-29786-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29786-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29785-4

  • Online ISBN: 978-3-031-29786-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics