Skip to main content

Classification of Focused Perturbations Using Time-Variant Functional Connectivity with rs-fmri

  • Conference paper
  • First Online:
Applications of Computational Intelligence (ColCACI 2022)

Abstract

Focal disturbances in the cerebral activity modulated by transcranial magnetic stimulation (TMS) produce alterations in brain connectivity at the global level. Those effects can be studied using time-varying functional connectivity (TVFC) based on functional magnetic resonance imaging at rest (rs-fMRI). The characteristics of these alterations could be modeled using machine learning algorithms for patient classification. This study used hidden Markov models (HMM) to evaluate temporal variations in functional connectivity after stimulation of two different brain areas (Frontal and Occipital). We modeled the dynamics of 15 resting-state networks in 12 states by calculating the fractional occupancy, mean lifetime, and interval time of each state. We then compared the difference between fMRI sessions, PRE, and POST-stimulus, observing significant differences for both conditions, especially after frontal stimulation. Finally, generative models based on HMM were trained, to classify PRE-stimulus and Occipital stimulus with an accuracy of 83%, PRE-stimulus and Frontal stimulus with an accuracy of 85%, and Occipital and Frontal stimulus with 65% accuracy. This finding could be extended to the characterization of pathologies where local disturbances have a global impact on functional connectivity, such as Epilepsy.

J. Arias-Londoño—started this work at the Antioquia University and finished it supported by a María Zambrano grant from the Universidad Politécnica de Madrid, Spain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://openneuro.org/datasets/ds001927/versions/2.0.2.

  2. 2.

    C-PAC https://fcp-indi.github.io/.

  3. 3.

    Available at https://pypi.org/project/hmmlearn.

References

  1. Abela, E., Rummel, C., Hauf, M., Weisstanner, C., Schindler, K., Wiest, R.: Neuroimaging of epilepsy: lesions, networks, oscillations. Clin. Neuroradiol. 24(1), 5–15 (2014). https://doi.org/10.1007/s00062-014-0284-8

    Article  Google Scholar 

  2. Castrillon, G., Sollmann, N., Kurcyus, K., Razi, A., Krieg, S.M., Riedl, V.: The physiological effects of noninvasive brain stimulation fundamentally differ across the human cortex. Sci. Adv. 6 (2020). https://doi.org/10.1126/sciadv.aay2739

  3. Elshoff, L., et al.: Dynamic imaging of coherent sources reveals different network connectivity underlying the generation and perpetuation of epileptic seizures. PLoS ONE 8, 1–11 (2013). https://doi.org/10.1371/journal.pone.0078422

    Article  Google Scholar 

  4. Fox, M.D., Halko, M.A., Eldaief, M.C., Pascual-Leone, A.: Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). NeuroImage 62, 2232–2243 (2012). https://doi.org/10.1016/j.neuroimage.2012.03.035, http://dx.doi.org/10.1016/j.neuroimage.2012.03.035

  5. Gollo, L.L., Roberts, J.A., Cocchi, L.: Mapping how local perturbations influence systems-level brain dynamics. NeuroImage 160, 97–112 (2017). https://doi.org/10.1016/j.neuroimage.2017.01.057, http://dx.doi.org/10.1016/j.neuroimage.2017.01.057

  6. Goyal, C.: Deep understanding of discriminative and generative models (2021). https://www.analyticsvidhya.com/blog/2021/07/deep-understanding-of-discriminative-and-generative-models-in-machine-learning/

  7. He, T., et al.: Meta-matching as a simple framework to translate phenotypic predictive models from big to small data. Nat. Neurosci. 25(6), 795–804 (2022). https://doi.org/10.1038/s41593-022-01059-9, https://www.nature.com/articles/s41593-022-01059-9

  8. Hussain, S., Langley, J., Seitz, A.R., Peters, M.A.K., Hu, X.P.: A novel hidden Markov approach to studying dynamic functional connectivity states in human neuroimaging. bioRxiv, p. 2022.02.02.478844 (2022). https://www.biorxiv.org/content/10.1101/2022.02.02.478844v1

  9. Kottaram, A., et al.: Brain network dynamics in schizophrenia: reduced dynamism of the default mode network. Hum. Brain Mapp. 40, 2212 (2019). https://doi.org/10.1002/HBM.24519, https://aplicacionesbiblioteca.udea.edu.co:2054/pmc/articles/PMC6917018/

  10. Lurie, D.J., et al.: Questions and controversies in the study of time-varying functional connectivity in resting fMRI. Netw. Neurosci. 4, 30–69 (2020)

    Article  Google Scholar 

  11. Matsubara, T.: Bayesian deep learning: a model-based interpretable approach. Nonlinear Theory Appl. IEICE 11, 16–35 (2020). https://doi.org/10.1587/NOLTA.11.16

    Article  Google Scholar 

  12. Opitz, A., Fox, M.D., Craddock, R.C., Colcombe, S., Milham, M.P.: An integrated framework for targeting functional networks via transcranial magnetic stimulation. NeuroImage 127, 86–96 (2016). https://doi.org/10.1016/J.NEUROIMAGE.2015.11.040, https://pubmed.ncbi.nlm.nih.gov/26608241/

  13. Polanía, R., Nitsche, M.A., Ruff, C.C.: Studying and modifying brain function with non-invasive brain stimulation. Nat. Neurosci. 21, 174–187 (2018). https://doi.org/10.1038/s41593-017-0054-4, http://dx.doi.org/10.1038/s41593-017-0054-4

  14. Rabiner, L.: A tutorial on hidden markov models and selected applications in speech recognition. Proc. IEEE 77, 257–286 (1989). https://doi.org/10.1109/5.18626, http://ieeexplore.ieee.org/document/18626/

  15. Sack, A.T., Kadosh, R.C., Schuhmann, T., Moerel, M., Walsh, V., Goebel, R.: Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods, pp. 1–15 (2008). https://doi.org/10.1162/jocn.2009.21126

  16. Schaefer, A., et al.: Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018). https://doi.org/10.1093/cercor/bhx179

    Article  Google Scholar 

  17. Sliwinska, M.W., Vitello, S., Devlin, J.T.: Transcranial magnetic stimulation for investigating causal brain-behavioral relationships and their time course. J. Vis. Exp. JoVE (2014). https://doi.org/10.3791/51735, http://www.ncbi.nlm.nih.gov/pubmed/25079670, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4219631

  18. Varoquaux, G.: Cross-validation failure: small sample sizes lead to large error bars. Neuroimage 180, 68–77 (2018). https://doi.org/10.1016/j.neuroimage.2017.06.061

    Article  Google Scholar 

  19. Vidaurre, D.: A new model for simultaneous dimensionality reduction and time-varying functional connectivity estimation. PLoS Comput. Biol. 17, 1–20 (2021). https://doi.org/10.1371/journal.pcbi.1008580, http://dx.doi.org/10.1371/journal.pcbi.1008580

  20. Vidaurre, D., Smith, S.M., Woolrich, M.W.: Brain network dynamics are hierarchically organized in time. Proc. Natl. Acad. Sci. U.S.A. 114, 12827–12832 (2017). https://doi.org/10.1073/pnas.1705120114

    Article  Google Scholar 

  21. Yeo, B.T.T., et al.: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011). https://doi.org/10.1152/jn.00338.2011

    Article  Google Scholar 

  22. Zhang, G., et al.: Estimating dynamic functional brain connectivity with a sparse hidden Markov model. IEEE Trans. Med. Imaging 39, 488–498 (2020). https://doi.org/10.1109/TMI.2019.2929959

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catalina Bustamante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bustamante, C., Castrillón, G., Arias-Londoño, J. (2023). Classification of Focused Perturbations Using Time-Variant Functional Connectivity with rs-fmri. In: Orjuela-Cañón, A.D., Lopez, J., Arias-Londoño, J.D., Figueroa-García, J.C. (eds) Applications of Computational Intelligence. ColCACI 2022. Communications in Computer and Information Science, vol 1746. Springer, Cham. https://doi.org/10.1007/978-3-031-29783-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29783-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29782-3

  • Online ISBN: 978-3-031-29783-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics