Abstract
For the last few decades, scientists have been working on the development of advanced drug delivery systems, which involve the use of carriers of medically active substances for precise and effective therapy accompanied by a reduction in the occurrence of side effects. The principle of controlled delivery of drugs is based on the control over the place where the drug will be released, the moment of the start of its release, the time interval during which it will be released, the amount of drug that will be released over time, by modifying the characteristics of the carrier, mostly depend on the properties of the carrier. When developing a system for modern drug delivery, it is of great importance to create an optimal material design, but also to predict how the material interacts with cells and tissue. Modern drug delivery systems include 3D printed tablets, patches, liposomes or nanoparticles. Also, novel technologies represent small devices with personalized drug administration where it is possible to combine different principles of release (constant, linear, pulsatile) or several different drugs together. The development of computer methods has made it possible to simulate the change in drug concentration over time on a computer, thus saving time on testing and materials. In order for computer methods to be as accurate as possible and correspond to the real system, it is necessary to create adequate computer models. These models are very useful tools in this field because with artificial intelligence we can predict the release of a drug of a certain concentration in time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dash, A.K., Cudworth II, G.C.: Therapeutic applications of implantable drug delivery systems. J. Pharmacol. Toxicol. Methods 40(1), 1–12 (1998). https://doi.org/10.1016/s1056-8719(98)00027-6
Kopecek, J.: Smart and genetically engineered biomaterials and drug delivery systems. Eur. J. Pharm. Sci. 20(1), 1–16 (2003). https://doi.org/10.1016/s0928-0987(03)00164-7
Redekop, W.K., Mladsi, D.: The faces of personalized medicine: a framework for understanding its meaning and scope. Value Health 16(6 Suppl.), S4– S9 (2013). https://doi.org/10.1016/j.jval.2013.06.005
Stanojević, G., Medarević, D., Adamov, I., Pešić, N., Kovačević, J., Ibrić, S.: Tailoring atomoxetine release rate from DLP 3D-printed tablets using artificial neural networks: influence of tablet thickness and drug loading. Molecules 26(1), 111 (2020). https://doi.org/10.3390/molecules26010111
Tan, J.P., et al.: Hierarchical supermolecular structures for sustained drug release. Small 5(13), 1504–1507 (2009). https://doi.org/10.1002/smll.200801756
Briones, E., Colino, C.I., Lanao, J.M.: Delivery systems to increase the selectivity of antibiotics in phagocytic cells. J. Control Release 125(3), 210–227 (2008). https://doi.org/10.1016/j.jconrel.2007.10.027
Tian, Y., et al.: A series of naphthalimide derivatives as intra and extracellular pH sensors. Biomaterials 31(29), 7411–7422 (2010). https://doi.org/10.1016/j.biomaterials.2010.06.023
Alymani, N.A., Smith, M.D., Williams, D.J., Petty, R.D.: Predictive biomarkers for personalised anti-cancer drug use: discovery to clinical implementation. Eur. J. Cancer 46(5), 869–879 (2010). https://doi.org/10.1016/j.ejca.2010.01.001
Davoodi, P., et al.: Drug delivery systems for programmed and on-demand release. Adv. Drug Deliv. Rev. 132, 104–138 (2018). https://doi.org/10.1016/j.addr.2018.07.002
Biondi, M., Ungaro, F., Quaglia, F., Netti, P.A.: Controlled drug delivery in tissue engineering. Adv. Drug Deliv. Rev. 60(2), 229–242 (2008). https://doi.org/10.1016/j.addr.2007.08.038
Akbar, M.U., Badar, M., Zaheer, M.: Programmable drug release from a dual-stimuli responsive magnetic metal-organic framework. ACS Omega 7(36), 32588–32598 (2022). https://doi.org/10.1021/acsomega.2c04144
Parveen, F., et al.: Investigation of eutectic mixtures of fatty acids as a novel construct for temperature-responsive drug delivery. Int. J. Nanomed. 17, 2413–2434 (2022). https://doi.org/10.2147/IJN.S359664
Song, Y., Li, Y., Xu, Q., Liu, Z.: Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook. Int. J. Nanomed. 12, 87–110 (2016). https://doi.org/10.2147/IJN.S117495
Ge, J., Neofytou, E., Cahill III, T.J., Beygui, R.E., Zare, R.N.: Drug release from electric-field-responsive nanoparticles. ACS Nano 6(1), 227–233 (2012). https://doi.org/10.1021/nn203430m
Ten Hagen, T.L.M., et al.: Drug transport kinetics of intravascular triggered drug delivery systems. Commun. Biol. 4(1), 920 (2021) https://doi.org/10.1038/s42003-021-02428-z
Afereydoon, S., et al.: Multifunctional PEGylated niosomal nanoparticle-loaded herbal drugs as a novel nano-radiosensitizer and stimuli-sensitive nanocarrier for synergistic cancer therapy. Front. Bioeng. Biotechnol. 10, 917368 (2022). https://doi.org/10.3389/fbioe.2022.917368
Fatfat, Z., Fatfat, M., Gali-Muhtasib, H.: Micelles as potential drug delivery systems for colorectal cancer treatment. World J. Gastroenterol. 28(25), 2867–2880 (2022). https://doi.org/10.3748/wjg.v28.i25.2867
Gupta, H., Bhandari, D., Sharma, A.: Recent trends in oral drug delivery: a review. Recent Pat. Drug Deliv. Formul. 3(2), 162–173 (2009). https://doi.org/10.2174/187221109788452267
Maver, U., Milojević, M., Štos, J., Adrenšek, S., Planinšek, O.: Matrix tablets for controlled release of drugs incorporated using capillary absorption. AAPS PharmSciTech 20(2), 91 (2019). https://doi.org/10.1208/s12249-019-1303-5
Abdelkader, H., Youssef Abdalla, O., Salem, H.: Formulation of controlled-release baclofen matrix tablets II: influence of some hydrophobic excipients on the release rate and in vitro evaluation. AAPS PharmSciTech 9(2), 675–683 (2008). https://doi.org/10.1208/s12249-008-9094-0
Al Hanbali, O.A., et al.: Transdermal patches: design and current approaches to painless drug delivery. Acta Pharm. 69(2), 197–215 (2019). https://doi.org/10.2478/acph-2019-0016
Cilurzo, F., Gennari, C.G., Minghetti, P.: Adhesive properties: a critical issue in transdermal patch development. Expert Opin. Drug Deliv. 9(1), 33–45 (2012). https://doi.org/10.1517/17425247.2012.637107
Pastore, M.N., Kalia, Y.N., Horstmann, M., Roberts, M.S.: Transdermal patches: history, development and pharmacology. Br. J. Pharmacol. 172(9), 2179–2209 (2015). https://doi.org/10.1111/bph.13059
Banerjee, S., Chattopadhyay, P., Ghosh, A., Datta, P., Veer, V.: Aspect of adhesives in transdermal drug delivery systems. Int. J. Adhes. Adhes. 50, 70–84 (2014). https://doi.org/10.1016/j.ijadhadh.2014.01.001
Wokovich, A.M., Prodduturi, S., Doub, W.H., Hussain, A.S., Buhse, L.F.: Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute. Eur. J. Pharm. Biopharm. 64(1), 1–8 (2006). https://doi.org/10.1016/j.ejpb.2006.03.009
Alexander, A., et al.: Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J Control Release 164(1), 26–40 (2012). https://doi.org/10.1016/j.jconrel.2012.09.017
Daniels, R., Knie, U.: Galenics of dermal products–vehicles, properties and drug release. J. Dtsch. Dermatol. Ges. 5(5), 367–383 (2007). https://doi.org/10.1111/j.1610-0387.2007.06321.x
Basu, S.C., Basu, M.: Liposome Methods and Protocols, vol. 199. Springer, Charm (2008)
Koruga, Đ: Nanotehnologije u medicini i kozmetici. Arhiv za Farmaciju 56(2), 164–177 (2006)
Utell, M.J., Frampton, M.W.: Acute health effects of ambient air pollution: the ultrafine particle hypothesis. J. Aerosol. Med. 13(4), 355–359 (2000). https://doi.org/10.1089/jam.2000.13.355
Nikolić, S., et al.: Orally administered fluorescent nanosized polystyrene particles affect cell viability, hormonal and inflammatory profile, and behavior in treated mice. Environ. Pollut. 305, 119206 (2022). https://doi.org/10.1016/j.envpol.2022.119206
Pokropivny, V.V., Skorokhod, V.V.: Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater. Sci. Eng. C 27(5–8), 990–993 (2007). https://doi.org/10.1016/j.msec.2006.09.023
Wu, B., Wu, X., Liu, S., Wang, Z., Chen, L.: Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2 cells. Chemosphere 221, 333–341 (2019). https://doi.org/10.1016/j.chemosphere.2019.01.056
Tiwari, P.M., Bawage, S.S., Singh, S.R.: Gold nanoparticles and their applications in photomedicine, diagnosis and therapy. Appl. Nanosci. Photomed., 249–266 (2015). https://doi.org/10.1533/9781908818782.249
Partha, R., Conyers, J.L.: Biomedical applications of functionalized fullerene-based nanomaterials. Int. J. Nanomed. 4, 261–275 (2009)
Stern, S.T., McNeil, S.E.: Nanotechnology safety concerns revisited. Toxicol. Sci. 10(1), 4–21 (2007). https://doi.org/10.1093/toxsci/kfm169
Conde, J., et al.: Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front. Chem. 2, 48 (2014). https://doi.org/10.3389/fchem.2014.00048
Lewis, G., Janna, S., Bhattaram, A.: Influence of the method of blending an antibiotic powder with an acrylic bone cement powder on physical, mechanical, and thermal properties of the cured cement. Biomaterials 26(20), 4317–4325 (2005). https://doi.org/10.1016/j.biomaterials.2004.11.003
Kumari, A., Yadav, S.K., Yadav, S.C.: Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75(1), 1–18 (2010). https://doi.org/10.1016/j.colsurfb.2009.09.001
Khang, G., Choi, H.S., Rhee, J.M.: Controlled release of gentamicin sulphate from poly (3-hydroxybuttyrateco-3-hydroxyvalerate) wafers for the treatment of osteomyelitis. Korea Polym. J. 8, 253–262 (2000)
Noel, S.P., Courtney, H., Bumgardner, J.D., Haggard, W.O.: Chitosan films: a potential local drug delivery system for antibiotics. Clin. Orthop. Relat. Res. 466(6), 1377–1382 (2008). https://doi.org/10.1007/s11999-008-0228-1
Aoki, K., Saito, N.: Biodegradable polymers as drug delivery systems for bone regeneration. Pharmaceutics 12(2), 95 (2020). https://doi.org/10.3390/pharmaceutics12020095
Kanellakopoulou, K., et al.: Lactic acid polymers as biodegradable carriers of fluoroquinolones: an in vitro study. Antimicrob. Agents Chemother. 43(3), 714–716 (1999). https://doi.org/10.1128/AAC.43.3.714
Adamović, D., Ristić, B., Živić, F.: Review of existing biomaterials – method of material selection for specific applications in orthopedics. Fakultet inženjenjrskih nauka, Univezitet u Kragujevcu (2018)
Martins, V.C., Goissis, G., Ribeiro, A.C., Marcantônio Jr., E., Bet, M.R.: The controlled release of antibiotic by hydroxyapatite: anionic collagen composites. Artif. Organs. 22(3), 215–21 (1998). https://doi.org/10.1046/j.1525-1594.1998.06004.x
Vey, E., et al.: Degradation mechanism of poly (lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution. Polym. Degrad. Stab. 93(10), 1869–1876 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.07.018
Jung, J.H., Ree, M., Kim, H.: Acid- and base-catalyzed hydrolyses of aliphatic polycarbonates and polyesters. Catal. Today 115(1–4), 283–287 (2006). https://doi.org/10.1016/j.cattod.2006.02.060
Gunatillake, P.A., Adhikari, R.: Biodegradable synthetic polymers for tissue engineering. Eur. Cell Mater. 5., 1–16 (2003). https://doi.org/10.22203/ecm.v005a01
Stevanović, M., et al.: Comparison of hydroxyapatite/poly (lactide-co-glycolide) and hydroxyapatite/polyethyleneimine composite scaffolds in bone regeneration of swine mandibular critical size defects: vivo study. Molecules 27(5), 1694 (2022). https://doi.org/10.3390/molecules27051694
Wang, X., et al.: Gelatin-based hydrogels for organ 3D bioprinting. Polymers 9(9), 401 (2017). https://doi.org/10.3390/polym9090401
Li, J., Wu, C., Chu, P.K., Gelinsky, M.: 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Mater. Sci. Eng. Rep. 140, 100543 (2020). https://doi.org/10.1016/j.mser.2020.100543
Yannas, I.V., Burke, J.F.: Design of an artificial skin. I. Basic design principles. J. Biomed. Mater. Res. 14(1), 65–81 (1980). https://doi.org/10.1002/jbm.820140108
Fu Lu, M.Z., Thies, C.: Collagen-Based Drug Delivery Devices. Polymers for Controlled Drug Delivery, CRC Press, Boca Raton, FL, pp. 149–161 (1991)
Nardi-Ricart, A., et al.: Formulation of sustained release hydrophilic matrix tablets of tolcapone with the application of sedem diagram: influence of tolcapone’s particle size on sustained release. Pharmaceutics 12(7), 674 (2020). https://doi.org/10.3390/pharmaceutics12070674
Bejugam, N.K., Parish, H.J., Shankar, G.N.: Influence of formulation factors on tablet formulations with liquid permeation enhancer using factorial design. AAPS PharmSciTech 10(4), 1437–1443 (2009). https://doi.org/10.1208/s12249-009-9345-8
Nguyen, T.T., Hwang, K.M., Kim, S.H., Park, E.S.: Development of novel bilayer gastroretentive tablets based on hydrophobic polymers. Int. J. Pharm. 574, 118865 (2020). https://doi.org/10.1016/j.ijpharm.2019.118865
Ozbolat, I.T., Moncal, K.K., Gudapati, H.: Evaluation of bioprinter technologies. Addit. Manuf. 13, 179–200 (2017). https://doi.org/10.1016/j.addma.2016.10.003
Webb, B., Doyle, B.J.: Parameter optimization for 3D bioprinting of hydrogels. Bioprinting 8, 8–12 (2017). https://doi.org/10.1016/j.bprint.2017.09.001
He, Y., Gu, Z., Xie, M., Fu, J., Lin, H.: Why choose 3D bioprinting? Part II: methods and bioprinters. Bio Des. Manuf. 3(1), 1–4 (2020). https://doi.org/10.1007/s42242-020-00064-w
Sears, N.A., Seshadri, D.R., Dhavalikar, P.S., Cosgriff-Hernandez, E.: A review of three-dimensional printing in tissue engineering. Tissue Eng. Part B Rev. 22(4), 298–310 (2016). https://doi.org/10.1089/ten.TEB.2015.0464
Kang, H.W., Lee, S.J., Ko, I.K., Kengla, C., Yoo, J.J., Atala, A.: A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34(3), 312–319 (2016). https://doi.org/10.1038/nbt.3413
Murphy, S.V., Atala, A.: 3D bioprinting of tissues and organs. Nat. Biotechnol. 32(8), 773–785 (2014). https://doi.org/10.1038/nbt.2958
He, Y., et al.: Research on the printability of hydrogels in 3D bioprinting. Sci. Rep. 6, 29977 (2016). https://doi.org/10.1038/srep29977
Melocchi, A., et al.: 3D printing by fused deposition modeling of single- and multi-compartment hollow systems for oral delivery - a review. Int. J. Pharm. 579, 119155 (2020). https://doi.org/10.1016/j.ijpharm.2020.119155
Živanović, M.N.: Use of electrospinning to enhance the versatility of drug delivery. In: Lai, W.F. (eds.) Systemic Delivery Technologies in Anti-Aging Medicine: Methods and Applications. Healthy Ageing and Longevity, vol. 13, pp. 347–364. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54490-4_14. ISBN 978-3-030-54489-8
Wang, T., Yang, L., Xie, Y., Cheng, S., Xiong, M., Luo, X.: An injectable hydrogel/staple fiber composite for sustained release of CA4P and doxorubicin for combined chemotherapy of xenografted breast tumor in mice. Nan Fang Yi Ke Da Xue Xue Bao. 42(5), 625-632 (2022). https://doi.org/10.12122/j.issn.1673-4254.2022.05.01
Miloševic, M., et al.: Preparation and modeling of three-layered PCL/PLGA/PCL fibrous scaffolds for prolonged drug release. Sci Rep. 10(1), 11126 (2020). https://doi.org/10.1038/s41598-020-68117-9
Gu, J., Wensing, M., Uhde, E., Salthammer, T.: Characterization of particulate and gaseous pollutants emitted during operation of a desktop 3D printer. Environ. Int. 123, 476–485 (2019). https://doi.org/10.1016/j.envint.2018.12.014
Hayashi, Y., Inoue, M., Takizawa, H., Suganuma, K.: Nanoparticle Fabrication. Nanopackaging, 109–120 (2008). https://doi.org/10.1007/978-0-387-47325-3_6
Yamada, H., Yamana, K., Kawasaki, R., Yasuhara, K., Ikeda, A.: Cyclodextrin-induced release of drug-entrapping liposomes associated with the solation of liposome gels. RSC Adv. 12(34), 22202–22209 (2022). https://doi.org/10.1039/d2ra03837d
Price, J.S., Tencer, A.F., Arm, D.M., Bohach, G.A.: Controlled release of antibiotics from coated orthopedic implants. J. Biomed. Mater. Res. 30(3), 281–286 (1996). https://doi.org/10.1002/(SICI)1097-4636(199603)30:3%3c281:AID-JBM2%3e3.0.CO;2-M
Food, D.: Administration, guidance for industry: waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. In: Food and Drug Administration, Rockville, MD (2000)
Vimalson, D.C., Parimalakrishnan, S., Jeganathan, N.S., Anbazhagan, S.: Techniques to enhance solubility of hydrophobic drugs: an overview. Asian J. Pharm. Sci. 10(2), S67–S75 (2016)
Ambrose, C.G., et al.: Antibiotic microspheres: preliminary testing for potential treatment of osteomyelitis. Clin. Orthop. Relat. Res. 415, 279–285 (2003). https://doi.org/10.1097/01.blo.0000093920.26658.ae
Lewis, R.E., et al.: Evaluation of low-dose, extended-interval clindamycin regimens against Staphylococcus aureus and Streptococcus pneumoniae using a dynamic in vitro model of infection. Antimicrob. Agents Chemother. 43(8), 2005–2009 (1999). https://doi.org/10.1128/AAC.43.8.2005
Virto, M.R., Elorza, B., Torrado, S., Elorza Mde, L., Frutos, G.: Improvement of gentamicin poly (D, L-lactic-co-glycolic acid) microspheres for treatment of osteomyelitis induced by orthopedic procedures. Biomaterials 28(5), 877–85 (2007). https://doi.org/10.1016/j.biomaterials.2006.09.045
Stajić, D., Živanović, S., Mirić, A., Sekulić, M., Đonović, N.: Prevalence of risk factors among women with osteoporosis. Serbian J. Exp. Clin. Res. 18(3), 239–243 (2017). https://doi.org/10.1515/sjecr-2016-0080
Perez, V.L., Wirostko, B., Korenfeld, M., From, S., Raizman, M.: Ophthalmic drug delivery using iontophoresis: recent clinical applications. J. Ocul. Pharmacol. Ther. 36(2), 75–87 (2020). https://doi.org/10.1089/jop.2019.0034
Bird, D., Ravindra, N.M.: Transdermal drug delivery and patches—an overview. Med. Devices Sens. 3(6) (2020). https://doi.org/10.1002/mds3.10069
Smaoui, M.R., Lafi, A.: Leeno: type 1 diabetes management training environment using smart algorithms. PLoS ONE 17(9), e0274534 (2022). https://doi.org/10.1371/journal.pone.0274534
Keyu, G., et al.: Comparing the effectiveness of continuous subcutaneous insulin infusion with multiple daily insulin injection for patients with type 1 diabetes mellitus evaluated by retrospective continuous glucose monitoring: a real-world data analysis. Front. Public Health 10, 990281 (2022). https://doi.org/10.3389/fpubh.2022.990281
Demetriades, M., et al.: Interrogating and quantifying in vitro cancer drug pharmacodynamics via agent-based and Bayesian monte Carlo modelling. Pharmaceutics 14(4), 749 (2022). https://doi.org/10.3390/pharmaceutics14040749
Galdi, I., Lamberti, G.: Drug release from matrix systems: analysis by finite element methods. Heat Mass Transfer. 48, 519–528 (2012). https://doi.org/10.1007/s00231-011-0900-y
Filipović, N., Živanović, M.N.: Use of numerical simulation in carrier characterization and optimization. In: Lai, WF. (eds.) Systemic Delivery Technologies in Anti-Aging Medicine: Methods and Applications. Healthy Ageing and Longevity, vol. 13, pp. 435–446. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54490-4_18
Hadjianfar, M., Semnani, D., Varshosaz, J., Mohammadi, S., Rezazadeh Tehrani, S.P.: 5FU-loaded PCL/Chitosan/Fe3O4 core-shell nanofibers structure: an approach to multi-mode anticancer system. Adv. Pharm. Bull. 12(3), 568–582 (2022). https://doi.org/10.34172/apb.2022.060
Mirić, A., et al.: Controlled drug release from a 3D printed tablet. In: 1st Serbian International Conference on Applied Artificial Intelligence, Kragujevac, Serbia, p 86, 19–20 May 2022. ISBN: 978-86-81037-71-3
Yokoi, K., et al.: Liposomal doxorubicin extravasation controlled by phenotype-specific transport properties of tumor microenvironment and vascular barrier. J. Control Release 217, 293–299 (2015). https://doi.org/10.1016/j.jconrel.2015.09.044
Milošević, M., et al.: A computational model for drug release from PLGA implant. Materials 11(12), 2416 (2018). https://doi.org/10.3390/ma11122416
Maleki, M., Amani-Tehran, M., Latifi, M., Mathur, S.: Drug release profile in core–shell nanofibrous structures: a study on Peppas equation and artificial neural network modeling. Comput Meth. Prog. Biomed. 113(1), 92–100 (2014). https://doi.org/10.1016/j.cmpb.2013.09.003
Musulin, J., et al.: Application of artificial intelligence-based regression methods in the problem of COVID-19 spread prediction: a systematic review. Int. J. Environ. Res. Public Health 18(8), 4287 (2021). https://doi.org/10.3390/ijerph18084287
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mirić, A., Milivojević, N. (2023). Intelligent Drug Delivery Systems. In: Filipovic, N. (eds) Applied Artificial Intelligence: Medicine, Biology, Chemistry, Financial, Games, Engineering. AAI 2022. Lecture Notes in Networks and Systems, vol 659. Springer, Cham. https://doi.org/10.1007/978-3-031-29717-5_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-29717-5_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-29716-8
Online ISBN: 978-3-031-29717-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)