Skip to main content

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 659))

Included in the following conference series:

  • 459 Accesses

Abstract

For the last few decades, scientists have been working on the development of advanced drug delivery systems, which involve the use of carriers of medically active substances for precise and effective therapy accompanied by a reduction in the occurrence of side effects. The principle of controlled delivery of drugs is based on the control over the place where the drug will be released, the moment of the start of its release, the time interval during which it will be released, the amount of drug that will be released over time, by modifying the characteristics of the carrier, mostly depend on the properties of the carrier. When developing a system for modern drug delivery, it is of great importance to create an optimal material design, but also to predict how the material interacts with cells and tissue. Modern drug delivery systems include 3D printed tablets, patches, liposomes or nanoparticles. Also, novel technologies represent small devices with personalized drug administration where it is possible to combine different principles of release (constant, linear, pulsatile) or several different drugs together. The development of computer methods has made it possible to simulate the change in drug concentration over time on a computer, thus saving time on testing and materials. In order for computer methods to be as accurate as possible and correspond to the real system, it is necessary to create adequate computer models. These models are very useful tools in this field because with artificial intelligence we can predict the release of a drug of a certain concentration in time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Austria)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Austria)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 219.99
Price includes VAT (Austria)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dash, A.K., Cudworth II, G.C.: Therapeutic applications of implantable drug delivery systems. J. Pharmacol. Toxicol. Methods 40(1), 1–12 (1998). https://doi.org/10.1016/s1056-8719(98)00027-6

    Article  Google Scholar 

  2. Kopecek, J.: Smart and genetically engineered biomaterials and drug delivery systems. Eur. J. Pharm. Sci. 20(1), 1–16 (2003). https://doi.org/10.1016/s0928-0987(03)00164-7

  3. Redekop, W.K., Mladsi, D.: The faces of personalized medicine: a framework for understanding its meaning and scope. Value Health 16(6 Suppl.), S4– S9 (2013). https://doi.org/10.1016/j.jval.2013.06.005

  4. Stanojević, G., Medarević, D., Adamov, I., Pešić, N., Kovačević, J., Ibrić, S.: Tailoring atomoxetine release rate from DLP 3D-printed tablets using artificial neural networks: influence of tablet thickness and drug loading. Molecules 26(1), 111 (2020). https://doi.org/10.3390/molecules26010111

  5. Tan, J.P., et al.: Hierarchical supermolecular structures for sustained drug release. Small 5(13), 1504–1507 (2009). https://doi.org/10.1002/smll.200801756

    Article  Google Scholar 

  6. Briones, E., Colino, C.I., Lanao, J.M.: Delivery systems to increase the selectivity of antibiotics in phagocytic cells. J. Control Release 125(3), 210–227 (2008). https://doi.org/10.1016/j.jconrel.2007.10.027

    Article  Google Scholar 

  7. Tian, Y., et al.: A series of naphthalimide derivatives as intra and extracellular pH sensors. Biomaterials 31(29), 7411–7422 (2010). https://doi.org/10.1016/j.biomaterials.2010.06.023

    Article  Google Scholar 

  8. Alymani, N.A., Smith, M.D., Williams, D.J., Petty, R.D.: Predictive biomarkers for personalised anti-cancer drug use: discovery to clinical implementation. Eur. J. Cancer 46(5), 869–879 (2010). https://doi.org/10.1016/j.ejca.2010.01.001

    Article  Google Scholar 

  9. Davoodi, P., et al.: Drug delivery systems for programmed and on-demand release. Adv. Drug Deliv. Rev. 132, 104–138 (2018). https://doi.org/10.1016/j.addr.2018.07.002

    Article  Google Scholar 

  10. Biondi, M., Ungaro, F., Quaglia, F., Netti, P.A.: Controlled drug delivery in tissue engineering. Adv. Drug Deliv. Rev. 60(2), 229–242 (2008). https://doi.org/10.1016/j.addr.2007.08.038

    Article  Google Scholar 

  11. Akbar, M.U., Badar, M., Zaheer, M.: Programmable drug release from a dual-stimuli responsive magnetic metal-organic framework. ACS Omega 7(36), 32588–32598 (2022). https://doi.org/10.1021/acsomega.2c04144

  12. Parveen, F., et al.: Investigation of eutectic mixtures of fatty acids as a novel construct for temperature-responsive drug delivery. Int. J. Nanomed. 17, 2413–2434 (2022). https://doi.org/10.2147/IJN.S359664

    Article  Google Scholar 

  13. Song, Y., Li, Y., Xu, Q., Liu, Z.: Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook. Int. J. Nanomed. 12, 87–110 (2016). https://doi.org/10.2147/IJN.S117495

    Article  Google Scholar 

  14. Ge, J., Neofytou, E., Cahill III, T.J., Beygui, R.E., Zare, R.N.: Drug release from electric-field-responsive nanoparticles. ACS Nano 6(1), 227–233 (2012). https://doi.org/10.1021/nn203430m

    Article  Google Scholar 

  15. Ten Hagen, T.L.M., et al.: Drug transport kinetics of intravascular triggered drug delivery systems. Commun. Biol. 4(1), 920 (2021) https://doi.org/10.1038/s42003-021-02428-z

  16. Afereydoon, S., et al.: Multifunctional PEGylated niosomal nanoparticle-loaded herbal drugs as a novel nano-radiosensitizer and stimuli-sensitive nanocarrier for synergistic cancer therapy. Front. Bioeng. Biotechnol. 10, 917368 (2022). https://doi.org/10.3389/fbioe.2022.917368

  17. Fatfat, Z., Fatfat, M., Gali-Muhtasib, H.: Micelles as potential drug delivery systems for colorectal cancer treatment. World J. Gastroenterol. 28(25), 2867–2880 (2022). https://doi.org/10.3748/wjg.v28.i25.2867

    Article  Google Scholar 

  18. Gupta, H., Bhandari, D., Sharma, A.: Recent trends in oral drug delivery: a review. Recent Pat. Drug Deliv. Formul. 3(2), 162–173 (2009). https://doi.org/10.2174/187221109788452267

    Article  Google Scholar 

  19. Maver, U., Milojević, M., Štos, J., Adrenšek, S., Planinšek, O.: Matrix tablets for controlled release of drugs incorporated using capillary absorption. AAPS PharmSciTech 20(2), 91 (2019). https://doi.org/10.1208/s12249-019-1303-5

  20. Abdelkader, H., Youssef Abdalla, O., Salem, H.: Formulation of controlled-release baclofen matrix tablets II: influence of some hydrophobic excipients on the release rate and in vitro evaluation. AAPS PharmSciTech 9(2), 675–683 (2008). https://doi.org/10.1208/s12249-008-9094-0

    Article  Google Scholar 

  21. Al Hanbali, O.A., et al.: Transdermal patches: design and current approaches to painless drug delivery. Acta Pharm. 69(2), 197–215 (2019). https://doi.org/10.2478/acph-2019-0016

  22. Cilurzo, F., Gennari, C.G., Minghetti, P.: Adhesive properties: a critical issue in transdermal patch development. Expert Opin. Drug Deliv. 9(1), 33–45 (2012). https://doi.org/10.1517/17425247.2012.637107

    Article  Google Scholar 

  23. Pastore, M.N., Kalia, Y.N., Horstmann, M., Roberts, M.S.: Transdermal patches: history, development and pharmacology. Br. J. Pharmacol. 172(9), 2179–2209 (2015). https://doi.org/10.1111/bph.13059

    Article  Google Scholar 

  24. Banerjee, S., Chattopadhyay, P., Ghosh, A., Datta, P., Veer, V.: Aspect of adhesives in transdermal drug delivery systems. Int. J. Adhes. Adhes. 50, 70–84 (2014). https://doi.org/10.1016/j.ijadhadh.2014.01.001

    Article  Google Scholar 

  25. Wokovich, A.M., Prodduturi, S., Doub, W.H., Hussain, A.S., Buhse, L.F.: Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute. Eur. J. Pharm. Biopharm. 64(1), 1–8 (2006). https://doi.org/10.1016/j.ejpb.2006.03.009

    Article  Google Scholar 

  26. Alexander, A., et al.: Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J Control Release 164(1), 26–40 (2012). https://doi.org/10.1016/j.jconrel.2012.09.017

  27. Daniels, R., Knie, U.: Galenics of dermal products–vehicles, properties and drug release. J. Dtsch. Dermatol. Ges. 5(5), 367–383 (2007). https://doi.org/10.1111/j.1610-0387.2007.06321.x

    Article  Google Scholar 

  28. Basu, S.C., Basu, M.: Liposome Methods and Protocols, vol. 199. Springer, Charm (2008)

    Google Scholar 

  29. Koruga, Đ: Nanotehnologije u medicini i kozmetici. Arhiv za Farmaciju 56(2), 164–177 (2006)

    Google Scholar 

  30. Utell, M.J., Frampton, M.W.: Acute health effects of ambient air pollution: the ultrafine particle hypothesis. J. Aerosol. Med. 13(4), 355–359 (2000). https://doi.org/10.1089/jam.2000.13.355

  31. Nikolić, S., et al.: Orally administered fluorescent nanosized polystyrene particles affect cell viability, hormonal and inflammatory profile, and behavior in treated mice. Environ. Pollut. 305, 119206 (2022). https://doi.org/10.1016/j.envpol.2022.119206

  32. Pokropivny, V.V., Skorokhod, V.V.: Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater. Sci. Eng. C 27(5–8), 990–993 (2007). https://doi.org/10.1016/j.msec.2006.09.023

    Article  Google Scholar 

  33. Wu, B., Wu, X., Liu, S., Wang, Z., Chen, L.: Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2 cells. Chemosphere 221, 333–341 (2019). https://doi.org/10.1016/j.chemosphere.2019.01.056

    Article  Google Scholar 

  34. Tiwari, P.M., Bawage, S.S., Singh, S.R.: Gold nanoparticles and their applications in photomedicine, diagnosis and therapy. Appl. Nanosci. Photomed., 249–266 (2015). https://doi.org/10.1533/9781908818782.249

  35. Partha, R., Conyers, J.L.: Biomedical applications of functionalized fullerene-based nanomaterials. Int. J. Nanomed. 4, 261–275 (2009)

    Google Scholar 

  36. Stern, S.T., McNeil, S.E.: Nanotechnology safety concerns revisited. Toxicol. Sci. 10(1), 4–21 (2007). https://doi.org/10.1093/toxsci/kfm169

    Article  Google Scholar 

  37. Conde, J., et al.: Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front. Chem. 2, 48 (2014). https://doi.org/10.3389/fchem.2014.00048

  38. Lewis, G., Janna, S., Bhattaram, A.: Influence of the method of blending an antibiotic powder with an acrylic bone cement powder on physical, mechanical, and thermal properties of the cured cement. Biomaterials 26(20), 4317–4325 (2005). https://doi.org/10.1016/j.biomaterials.2004.11.003

    Article  Google Scholar 

  39. Kumari, A., Yadav, S.K., Yadav, S.C.: Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75(1), 1–18 (2010). https://doi.org/10.1016/j.colsurfb.2009.09.001

    Article  Google Scholar 

  40. Khang, G., Choi, H.S., Rhee, J.M.: Controlled release of gentamicin sulphate from poly (3-hydroxybuttyrateco-3-hydroxyvalerate) wafers for the treatment of osteomyelitis. Korea Polym. J. 8, 253–262 (2000)

    Google Scholar 

  41. Noel, S.P., Courtney, H., Bumgardner, J.D., Haggard, W.O.: Chitosan films: a potential local drug delivery system for antibiotics. Clin. Orthop. Relat. Res. 466(6), 1377–1382 (2008). https://doi.org/10.1007/s11999-008-0228-1

    Article  Google Scholar 

  42. Aoki, K., Saito, N.: Biodegradable polymers as drug delivery systems for bone regeneration. Pharmaceutics 12(2), 95 (2020). https://doi.org/10.3390/pharmaceutics12020095

  43. Kanellakopoulou, K., et al.: Lactic acid polymers as biodegradable carriers of fluoroquinolones: an in vitro study. Antimicrob. Agents Chemother. 43(3), 714–716 (1999). https://doi.org/10.1128/AAC.43.3.714

    Article  Google Scholar 

  44. Adamović, D., Ristić, B., Živić, F.: Review of existing biomaterials – method of material selection for specific applications in orthopedics. Fakultet inženjenjrskih nauka, Univezitet u Kragujevcu (2018)

    Google Scholar 

  45. Martins, V.C., Goissis, G., Ribeiro, A.C., Marcantônio Jr., E., Bet, M.R.: The controlled release of antibiotic by hydroxyapatite: anionic collagen composites. Artif. Organs. 22(3), 215–21 (1998). https://doi.org/10.1046/j.1525-1594.1998.06004.x

  46. Vey, E., et al.: Degradation mechanism of poly (lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution. Polym. Degrad. Stab. 93(10), 1869–1876 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.07.018

    Article  Google Scholar 

  47. Jung, J.H., Ree, M., Kim, H.: Acid- and base-catalyzed hydrolyses of aliphatic polycarbonates and polyesters. Catal. Today 115(1–4), 283–287 (2006). https://doi.org/10.1016/j.cattod.2006.02.060

    Article  Google Scholar 

  48. Gunatillake, P.A., Adhikari, R.: Biodegradable synthetic polymers for tissue engineering. Eur. Cell Mater. 5., 1–16 (2003). https://doi.org/10.22203/ecm.v005a01

  49. Stevanović, M., et al.: Comparison of hydroxyapatite/poly (lactide-co-glycolide) and hydroxyapatite/polyethyleneimine composite scaffolds in bone regeneration of swine mandibular critical size defects: vivo study. Molecules 27(5), 1694 (2022). https://doi.org/10.3390/molecules27051694

  50. Wang, X., et al.: Gelatin-based hydrogels for organ 3D bioprinting. Polymers 9(9), 401 (2017). https://doi.org/10.3390/polym9090401

  51. Li, J., Wu, C., Chu, P.K., Gelinsky, M.: 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Mater. Sci. Eng. Rep. 140, 100543 (2020). https://doi.org/10.1016/j.mser.2020.100543

  52. Yannas, I.V., Burke, J.F.: Design of an artificial skin. I. Basic design principles. J. Biomed. Mater. Res. 14(1), 65–81 (1980). https://doi.org/10.1002/jbm.820140108

  53. Fu Lu, M.Z., Thies, C.: Collagen-Based Drug Delivery Devices. Polymers for Controlled Drug Delivery, CRC Press, Boca Raton, FL, pp. 149–161 (1991)

    Google Scholar 

  54. Nardi-Ricart, A., et al.: Formulation of sustained release hydrophilic matrix tablets of tolcapone with the application of sedem diagram: influence of tolcapone’s particle size on sustained release. Pharmaceutics 12(7), 674 (2020). https://doi.org/10.3390/pharmaceutics12070674

  55. Bejugam, N.K., Parish, H.J., Shankar, G.N.: Influence of formulation factors on tablet formulations with liquid permeation enhancer using factorial design. AAPS PharmSciTech 10(4), 1437–1443 (2009). https://doi.org/10.1208/s12249-009-9345-8

    Article  Google Scholar 

  56. Nguyen, T.T., Hwang, K.M., Kim, S.H., Park, E.S.: Development of novel bilayer gastroretentive tablets based on hydrophobic polymers. Int. J. Pharm. 574, 118865 (2020). https://doi.org/10.1016/j.ijpharm.2019.118865

  57. Ozbolat, I.T., Moncal, K.K., Gudapati, H.: Evaluation of bioprinter technologies. Addit. Manuf. 13, 179–200 (2017). https://doi.org/10.1016/j.addma.2016.10.003

  58. Webb, B., Doyle, B.J.: Parameter optimization for 3D bioprinting of hydrogels. Bioprinting 8, 8–12 (2017). https://doi.org/10.1016/j.bprint.2017.09.001

    Article  Google Scholar 

  59. He, Y., Gu, Z., Xie, M., Fu, J., Lin, H.: Why choose 3D bioprinting? Part II: methods and bioprinters. Bio Des. Manuf. 3(1), 1–4 (2020). https://doi.org/10.1007/s42242-020-00064-w

    Article  Google Scholar 

  60. Sears, N.A., Seshadri, D.R., Dhavalikar, P.S., Cosgriff-Hernandez, E.: A review of three-dimensional printing in tissue engineering. Tissue Eng. Part B Rev. 22(4), 298–310 (2016). https://doi.org/10.1089/ten.TEB.2015.0464

    Article  Google Scholar 

  61. Kang, H.W., Lee, S.J., Ko, I.K., Kengla, C., Yoo, J.J., Atala, A.: A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34(3), 312–319 (2016). https://doi.org/10.1038/nbt.3413

    Article  Google Scholar 

  62. Murphy, S.V., Atala, A.: 3D bioprinting of tissues and organs. Nat. Biotechnol. 32(8), 773–785 (2014). https://doi.org/10.1038/nbt.2958

    Article  Google Scholar 

  63. He, Y., et al.: Research on the printability of hydrogels in 3D bioprinting. Sci. Rep. 6, 29977 (2016). https://doi.org/10.1038/srep29977

  64. Melocchi, A., et al.: 3D printing by fused deposition modeling of single- and multi-compartment hollow systems for oral delivery - a review. Int. J. Pharm. 579, 119155 (2020). https://doi.org/10.1016/j.ijpharm.2020.119155

  65. Živanović, M.N.: Use of electrospinning to enhance the versatility of drug delivery. In: Lai, W.F. (eds.) Systemic Delivery Technologies in Anti-Aging Medicine: Methods and Applications. Healthy Ageing and Longevity, vol. 13, pp. 347–364. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54490-4_14. ISBN 978-3-030-54489-8

  66. Wang, T., Yang, L., Xie, Y., Cheng, S., Xiong, M., Luo, X.: An injectable hydrogel/staple fiber composite for sustained release of CA4P and doxorubicin for combined chemotherapy of xenografted breast tumor in mice. Nan Fang Yi Ke Da Xue Xue Bao. 42(5), 625-632 (2022). https://doi.org/10.12122/j.issn.1673-4254.2022.05.01

  67. Miloševic, M., et al.: Preparation and modeling of three-layered PCL/PLGA/PCL fibrous scaffolds for prolonged drug release. Sci Rep. 10(1), 11126 (2020). https://doi.org/10.1038/s41598-020-68117-9

  68. Gu, J., Wensing, M., Uhde, E., Salthammer, T.: Characterization of particulate and gaseous pollutants emitted during operation of a desktop 3D printer. Environ. Int. 123, 476–485 (2019). https://doi.org/10.1016/j.envint.2018.12.014

    Article  Google Scholar 

  69. Hayashi, Y., Inoue, M., Takizawa, H., Suganuma, K.: Nanoparticle Fabrication. Nanopackaging, 109–120 (2008). https://doi.org/10.1007/978-0-387-47325-3_6

  70. Yamada, H., Yamana, K., Kawasaki, R., Yasuhara, K., Ikeda, A.: Cyclodextrin-induced release of drug-entrapping liposomes associated with the solation of liposome gels. RSC Adv. 12(34), 22202–22209 (2022). https://doi.org/10.1039/d2ra03837d

    Article  Google Scholar 

  71. Price, J.S., Tencer, A.F., Arm, D.M., Bohach, G.A.: Controlled release of antibiotics from coated orthopedic implants. J. Biomed. Mater. Res. 30(3), 281–286 (1996). https://doi.org/10.1002/(SICI)1097-4636(199603)30:3%3c281:AID-JBM2%3e3.0.CO;2-M

    Article  Google Scholar 

  72. Food, D.: Administration, guidance for industry: waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. In: Food and Drug Administration, Rockville, MD (2000)

    Google Scholar 

  73. Vimalson, D.C., Parimalakrishnan, S., Jeganathan, N.S., Anbazhagan, S.: Techniques to enhance solubility of hydrophobic drugs: an overview. Asian J. Pharm. Sci. 10(2), S67–S75 (2016)

    Google Scholar 

  74. Ambrose, C.G., et al.: Antibiotic microspheres: preliminary testing for potential treatment of osteomyelitis. Clin. Orthop. Relat. Res. 415, 279–285 (2003). https://doi.org/10.1097/01.blo.0000093920.26658.ae

  75. Lewis, R.E., et al.: Evaluation of low-dose, extended-interval clindamycin regimens against Staphylococcus aureus and Streptococcus pneumoniae using a dynamic in vitro model of infection. Antimicrob. Agents Chemother. 43(8), 2005–2009 (1999). https://doi.org/10.1128/AAC.43.8.2005

    Article  Google Scholar 

  76. Virto, M.R., Elorza, B., Torrado, S., Elorza Mde, L., Frutos, G.: Improvement of gentamicin poly (D, L-lactic-co-glycolic acid) microspheres for treatment of osteomyelitis induced by orthopedic procedures. Biomaterials 28(5), 877–85 (2007). https://doi.org/10.1016/j.biomaterials.2006.09.045

  77. Stajić, D., Živanović, S., Mirić, A., Sekulić, M., Đonović, N.: Prevalence of risk factors among women with osteoporosis. Serbian J. Exp. Clin. Res. 18(3), 239–243 (2017). https://doi.org/10.1515/sjecr-2016-0080

    Article  Google Scholar 

  78. Perez, V.L., Wirostko, B., Korenfeld, M., From, S., Raizman, M.: Ophthalmic drug delivery using iontophoresis: recent clinical applications. J. Ocul. Pharmacol. Ther. 36(2), 75–87 (2020). https://doi.org/10.1089/jop.2019.0034

    Article  Google Scholar 

  79. Bird, D., Ravindra, N.M.: Transdermal drug delivery and patches—an overview. Med. Devices Sens. 3(6) (2020). https://doi.org/10.1002/mds3.10069

  80. Smaoui, M.R., Lafi, A.: Leeno: type 1 diabetes management training environment using smart algorithms. PLoS ONE 17(9), e0274534 (2022). https://doi.org/10.1371/journal.pone.0274534

  81. Keyu, G., et al.: Comparing the effectiveness of continuous subcutaneous insulin infusion with multiple daily insulin injection for patients with type 1 diabetes mellitus evaluated by retrospective continuous glucose monitoring: a real-world data analysis. Front. Public Health 10, 990281 (2022). https://doi.org/10.3389/fpubh.2022.990281

  82. Demetriades, M., et al.: Interrogating and quantifying in vitro cancer drug pharmacodynamics via agent-based and Bayesian monte Carlo modelling. Pharmaceutics 14(4), 749 (2022). https://doi.org/10.3390/pharmaceutics14040749

  83. Galdi, I., Lamberti, G.: Drug release from matrix systems: analysis by finite element methods. Heat Mass Transfer. 48, 519–528 (2012). https://doi.org/10.1007/s00231-011-0900-y

    Article  Google Scholar 

  84. Filipović, N., Živanović, M.N.: Use of numerical simulation in carrier characterization and optimization. In: Lai, WF. (eds.) Systemic Delivery Technologies in Anti-Aging Medicine: Methods and Applications. Healthy Ageing and Longevity, vol. 13, pp. 435–446. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54490-4_18

  85. Hadjianfar, M., Semnani, D., Varshosaz, J., Mohammadi, S., Rezazadeh Tehrani, S.P.: 5FU-loaded PCL/Chitosan/Fe3O4 core-shell nanofibers structure: an approach to multi-mode anticancer system. Adv. Pharm. Bull. 12(3), 568–582 (2022). https://doi.org/10.34172/apb.2022.060

  86. Mirić, A., et al.: Controlled drug release from a 3D printed tablet. In: 1st Serbian International Conference on Applied Artificial Intelligence, Kragujevac, Serbia, p 86, 19–20 May 2022. ISBN: 978-86-81037-71-3

    Google Scholar 

  87. Yokoi, K., et al.: Liposomal doxorubicin extravasation controlled by phenotype-specific transport properties of tumor microenvironment and vascular barrier. J. Control Release 217, 293–299 (2015). https://doi.org/10.1016/j.jconrel.2015.09.044

  88. Milošević, M., et al.: A computational model for drug release from PLGA implant. Materials 11(12), 2416 (2018). https://doi.org/10.3390/ma11122416

  89. Maleki, M., Amani-Tehran, M., Latifi, M., Mathur, S.: Drug release profile in core–shell nanofibrous structures: a study on Peppas equation and artificial neural network modeling. Comput Meth. Prog. Biomed. 113(1), 92–100 (2014). https://doi.org/10.1016/j.cmpb.2013.09.003

    Article  Google Scholar 

  90. Musulin, J., et al.: Application of artificial intelligence-based regression methods in the problem of COVID-19 spread prediction: a systematic review. Int. J. Environ. Res. Public Health 18(8), 4287 (2021). https://doi.org/10.3390/ijerph18084287

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Mirić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mirić, A., Milivojević, N. (2023). Intelligent Drug Delivery Systems. In: Filipovic, N. (eds) Applied Artificial Intelligence: Medicine, Biology, Chemistry, Financial, Games, Engineering. AAI 2022. Lecture Notes in Networks and Systems, vol 659. Springer, Cham. https://doi.org/10.1007/978-3-031-29717-5_21

Download citation

Publish with us

Policies and ethics