Skip to main content

Abstract

Air filters in the expiratory circuit are medical devices used in breathing circuits with the aim to protect patients, equipment, and the environment from cross infection due to pathogens able to spread by air. Filters have variable composition and form that determine mechanical ability to withhold microorganisms and particles, allowing to identify efficiency particulate air (EPA), high-efficiency particulate air (HEPA), and ultra-low penetration air filters. Heat moisture and exchangers (HMEs), instead, can retain heat and humidity from exhaled air and return them to the patient during the following inspiration. HMEs also provide a filtration function that can be either electrostatic or mechanical, and they can be classified as either EPA or HEPA based on their filtration efficiency. Connecting a bacterial–viral filter to the breathing circuit modifies its mechanical characteristics because it could increase the compliance of the circuit, increase dead space if placed at the airway interface, and it could add a resistance that causes a pressure drop between the inlet and the outlet of the filter. In this chapter, we will analyze the types of filters, the mechanisms underlying filtration, the positions of the filters in the breathing circuits, and their advantages/disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spelce D, Rehak TR, Metzler RW, et al. History of U.S. respirator approval. J Int Soc Respir Prot. 2018;35:35.

    PubMed  PubMed Central  Google Scholar 

  2. Drexler M, Institute of Medicine (US). How infection works. What you need to know about infectious disease. Washington, DC: National Academies Press; 2010.

    Google Scholar 

  3. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708.

    Article  CAS  PubMed  Google Scholar 

  4. First MW. Hepa filters. J Am Biol Saf Assoc. 1998;3(1):33–42.

    Google Scholar 

  5. World Health Organization (WHO). Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations. Geneva: World Health Organization; 2020.

    Google Scholar 

  6. Siegel JD, Rhinehart E, Jackson M, et al. Guideline for isolation precautions: preventing transmission of infectious agents in healthcare settings 2007. In: Hospital-acquired infections. 2009.

    Google Scholar 

  7. World Health Organization (WHO). Infection prevention and control of epidemic- and pandemic-prone acute respiratory infections in health care: WHO guidelines. Geneva: Pandemic and Epidemic Diseases, World Health Organization; 2014.

    Google Scholar 

  8. Elias B, Bar-Yam Y. Could air filtration reduce COVID-19 severity and spread? Cambridge, MA: New England Complex Systems Institute; 2020.

    Google Scholar 

  9. Wang Y, Siesel C, Chen Y et al. Transmission of COVID-19 in the state of Georgia, United States: Spatiotemporal variation and impact of social distancing. medRxiv. 2020.

    Google Scholar 

  10. Zuo Z, Kuehn TH, Verma H, et al. Association of airborne virus infectivity and survivability with its carrier particle size. Aerosol Sci Technol. 2013;47(4):373–82.

    Article  CAS  Google Scholar 

  11. van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564.

    Article  PubMed  Google Scholar 

  12. Wilkes AR. Heat and moisture exchangers and breathing system filters: their use in anaesthesia and intensive care. Part 1 - History, principles and efficiency. Anaesthesia. 2011;66:31.

    Article  CAS  PubMed  Google Scholar 

  13. Hedley RM, Allt-Graham J. A comparison of the filtration properties of heat and moisture exchangers. Anaesthesia. 1992;47(5):414.

    Article  CAS  PubMed  Google Scholar 

  14. Wilkes AR. Assessing breathing-system filters. Med Device Technol. 2004;15(5):12.

    PubMed  Google Scholar 

  15. Dunnett S. Filtration mechanisms. In: Colbeck I, Lazaridis M, editors. Aerosol science: technology and applications. Chichester: Wiley; 2014.

    Google Scholar 

  16. Ramskill EA, Anderson WL. The inertial mechanism in the mechanical filtration of aerosols. J Colloid Sci. 1951;6(5):416.

    Article  CAS  Google Scholar 

  17. de Aragão Umbuzeiro G, Collier TK. Environmental science and pollution research. Environ Sci Pollut Res. 2019;26:27555–7.

    Article  Google Scholar 

  18. Thiessen RJ. Filtration of respired gases: theoretical aspects. Respir Care Clin N Am. 2006;12:183–201.

    PubMed  Google Scholar 

  19. Demers RR. Bacterial/viral filtration: let the breather beware! Chest. 2001;120(4):1377.

    Article  CAS  PubMed  Google Scholar 

  20. Rengasamy S, Eimer BC, Shaffer RE. Comparison of nanoparticle filtration performance of NIOSH-approved and CE-marked particulate filtering facepiece respirators. Ann Occup Hyg. 2009;53(2):117.

    Article  CAS  PubMed  Google Scholar 

  21. Wilkes AR. Heat and moisture exchangers and breathing system filters: their use in anaesthesia and intensive care. Part 2 - Practical use, including problems, and their use with paediatric patients. Anaesthesia. 2011;66:40–51.

    Article  CAS  PubMed  Google Scholar 

  22. Lloyd G, Howells J, Liddle C, et al. Barriers to hepatitis C transmission within breathing systems: efficacy of a pleated hydrophobic filter. Anaesth Intensive Care. 1997;25(3):235.

    Article  CAS  PubMed  Google Scholar 

  23. Jensen PA, Lambert LA, Iademarco MF, et al. Guidelines for preventing the transmission of Mycobacterium tuberculosis in health-care settings, 2005. MMWR Recomm Rep. 2005;54(17):1–141.

    PubMed  Google Scholar 

  24. Berry AJ, Nolte FS. An alternative strategy for infection control of anesthesia breathing circuits: a laboratory assessment of the pall HME filter. Anesth Analg. 1991;72(5):651–5.

    Article  CAS  PubMed  Google Scholar 

  25. Gallagher J, Strangeways JEM, Allt-Graham J. Contamination control in long-term ventilation: a clinical study using a heat- and moisture-exchanging filter. Anaesthesia. 1987;42(5):476.

    Article  CAS  PubMed  Google Scholar 

  26. Campbell RS, Davis K, Johannigman JA, et al. The effects of passive humidifier dead space on respiratory variables in paralyzed and spontaneously breathing patients. Respir Care. 2000;45(3):306.

    CAS  PubMed  Google Scholar 

  27. Lawes EG. Hidden hazards and dangers associated with the use of HME/filters in breathing circuits. Their effect on toxic metabolite production, pulse oximetry and airway resistance. Br J Anaesth. 2003;91:249.

    Article  CAS  PubMed  Google Scholar 

  28. McEwan AI, Dowell L, Karis JH. Bilateral tension pneumothorax caused by a blocked bacterial filter in an anesthesia breathing circuit. Anesth Analg. 1993;76(2):440.

    CAS  PubMed  Google Scholar 

  29. Tonnelier A, Lellouche F, Alexandre Bouchard P, et al. Impact of humidification and nebulization during expiratory limb protection: an experimental bench study. Respir Care. 2013;58(8):1315.

    Article  PubMed  Google Scholar 

  30. Lucchini A, Giani M, Isgrò S, et al. The “helmet bundle” in COVID-19 patients undergoing non invasive ventilation. Intensive Crit Care Nurs. 2020;58:102859.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Davis K, Evans SL, Campbell RS, et al. Prolonged use of heat and moisture exchangers does not affect device efficiency or frequency rate of nosocomial pneumonia. Crit Care Med. 2000;28(5):1412.

    Article  PubMed  Google Scholar 

  32. Ricard JD, Le ME, Markowicz P, et al. Efficiency and safety of mechanical ventilation with a heat and moisture exchanger changed only once a week. Am J Respir Crit Care Med. 2000;161(1):104.

    Article  CAS  PubMed  Google Scholar 

  33. Han JN, Liu YP, Ma S, et al. Effects of decreasing the frequency of ventilator circuit changes to every 7 days on the rate of ventilator-associated pneumonia in a Beijing Hospital. Respir Care. 2001;46(9):891.

    CAS  PubMed  Google Scholar 

  34. Hübner N-O, Daeschlein G, Lehmann C, et al. Microbiological safety and cost-effectiveness of weekly breathing circuit changes in combination with heat moisture exchange filters: a prospective longitudinal clinical survey. GMS Krankenhhyg Interdiszip. 2011;6(1):Doc15.

    PubMed  PubMed Central  Google Scholar 

  35. Kramer A, Assadian O, Daeschlein G, et al. Gemeinsame empfehlung Deutsche Gesellschaft für Krankenhaushygiene e.V. (DGKH) Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin e.V. (DGAI): Infektionsprävention bei der narkosebeatmung durch einsatz von atemsystemfiltern. Vol. 51, Anasthesiologie und Intensivmedizin. 2010.

    Google Scholar 

  36. Asadi S, Bouvier N, Wexler AS, et al. The coronavirus pandemic and aerosols: does COVID-19 transmit via expiratory particles? Aerosol Sci Technol. 2020;54:635.

    Article  CAS  Google Scholar 

  37. Chia PY, Coleman KK, Tan YK, et al. Detection of air and surface contamination by severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) in hospital rooms of infected patients. medRxiv. 2020.

    Google Scholar 

  38. Sorbello M, El-Boghdadly K, Di Giacinto I, et al. The Italian coronavirus disease 2019 outbreak: recommendations from clinical practice. Anaesthesia. 2020;75(6):724.

    Article  CAS  PubMed  Google Scholar 

  39. Wax RS, Christian MD. Practical recommendations for critical care and anesthesiology teams caring for novel coronavirus (2019-nCoV) patients. Can J Anesth. 2020;67:568.

    Article  CAS  PubMed  Google Scholar 

  40. Cabrini L, Landoni G, Zangrillo A. Minimise nosocomial spread of 2019-nCoV when treating acute respiratory failure. Lancet. 2020;395:685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morán I, Bellapart J, Vari A, et al. Heat and moisture exchangers and heated humidifiers in acute lung injury/acute respiratory distress syndrome patients. Effects on respiratory mechanics and gas exchange. Intensive Care Med. 2006;32(4):524.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Marini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marini, M. et al. (2023). Bacterial and Viral Filters to the Expiratory Circuit. In: Esquinas, A.M. (eds) Noninvasive Mechanical Ventilation in High Risk Infections, Mass Casualty and Pandemics . Springer, Cham. https://doi.org/10.1007/978-3-031-29673-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29673-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29672-7

  • Online ISBN: 978-3-031-29673-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics