Skip to main content

Responsivity and Sensitivity

  • Chapter
  • First Online:
Fundamentals of Nanomechanical Resonators

Abstract

A change of mass or temperature, or an applied force, causes a response of a mechanical resonator. The response can, e.g., be a change in frequency or vibrational amplitude. The responsivity of a mechanical resonator is the linear slope of the response to a particular stimulant. In case of a sensor application, the responsivity to the input parameter to be measured should be maximal. However, the responsivity to other inputs, such as a change in ambient temperature, should be minimal in order not to cause an unwanted cross response. In this chapter, the responsivities of micro- and nanomechanical resonators to mass (distributed and point masses), force gradients, temperature, and heating are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moser, J. Güttinger, J., Eichler, A., Esplandiu, M. J., Liu, D. E., Dykman, M. I., & Bachtold, A. (2013). Ultrasensitive force detection with a nanotube mechanical resonator. Nature Nanotechnology, 8(7), 493–496.

    Article  Google Scholar 

  2. Héritier, M., Eichler, A., Pan, Y., Grob, U., Shorubalko, I., Krass, M. D., Tao, Y., & Degen, C. L. (2018). Nanoladder cantilevers made from diamond and silicon. Nano Letters, 18(3), 1814–1818.

    Article  Google Scholar 

  3. Schmid, S., & Hierold, C. (2008). Damping mechanisms of single-clamped and prestressed double-clamped resonant polymer microbeams. Journal of Applied Physics, 104(9), 093516.

    Article  Google Scholar 

  4. Bose, S., Schmid, S., Larsen, T., Keller, S. S., Sommer-Larsen, P., Boisen, A., & Almdal, K. (2014). Micromechanical string resonators: Analytical tool for thermal characterization of polymers. ACS Macro Letters, 3(1), 55–58.

    Article  Google Scholar 

  5. Tao, Y., Navaretti, P., Hauert, R., Grob, U., Poggio, M., & Degen, C. L. (2015). Permanent reduction of dissipation in nanomechanical Si resonators by chemical surface protection. Nanotechnology, 26(46), 465501.

    Article  Google Scholar 

  6. Hanay, M. S., Kelber, S., Naik, A. K., Chi, D., Hentz, S., Bullard, E. C., Colinet, E., Duraffourg, L., & Roukes, M. L. (2012). Single-protein nanomechanical mass spectrometry in real time. Nature Nanotechnology, 7, 602–608.

    Article  Google Scholar 

  7. Schmid, S., Kurek, M., Adolphsen, J. Q., Boisen, A. (2013). Real-time single airborne nanoparticle detection with nanomechanical resonant filter-fiber. Scientific Reports, 3, 1288.

    Article  Google Scholar 

  8. Dohn, S., Sandberg, R., Svendsen, W., & Boisen, A. (2005). Enhanced functionality of cantilever based mass sensors using higher modes. Applied Physics Letters, 86(23), 233501.

    Article  Google Scholar 

  9. Dohn, S., Svendsen, W., Boisen, A., & Hansen, O. (2007). Mass and position determination of attached particles on cantilever based mass sensors. Review of Scientific Instruments, 78(10), 103303.

    Article  Google Scholar 

  10. Yu, H., & Li, X. (2009). Bianalyte mass detection with a single resonant microcantilever. Applied Physics Letters, 94(1), 173–176.

    Article  Google Scholar 

  11. Schmid, S., Dohn, S., & Boisen, A. (2010). Real-time particle mass spectrometry based on resonant micro strings. Sensors, 10(9), 8092–8100.

    Article  Google Scholar 

  12. Dohn, S., Schmid, S., Amiot, F., & Boisen, A. (2010). Position and mass determination of multiple particles using cantilever based mass sensors. Applied Physics Letters, 97(4), 044103.

    Article  Google Scholar 

  13. Hanay, M. S., Kelber, S. I., O’Connell, C. D., Mulvaney, P., Sader, J. E., & Roukes, M. L. (2015). Inertial imaging with nanomechanical systems. Nature Nanotechnology, 10(4), 339–344.

    Article  Google Scholar 

  14. Schmid, S., Kurek, M., & Boisen, A. (2013). Towards airborne nanoparticle mass spectrometry with nanomechanical string resonators. SPIE Defense, Security, and Sensing, 8725, 872525–872528.

    Google Scholar 

  15. Yang, Y. T., Callegari, C., Feng, X. L., Ekinci, K. L., & Roukes, M. L. (2006). Zeptogram-scale nanomechanical mass sensing. Nano Letters, 6(4), 583–586.

    Article  Google Scholar 

  16. Li, M., Tang, H. X., & Roukes, M. L. (2007). Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nature Nanotechnology, 2(2), 114–120.

    Article  Google Scholar 

  17. Voigtlaender, B. (2015). Scanning probe microscopy. Berlin: Springer.

    Book  Google Scholar 

  18. Kozinsky, I., Postma, H. W. Ch., Bargatin, I., & Roukes, M. L. (2006). Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators. Applied Physics Letters, 88(25), 253101.

    Article  Google Scholar 

  19. Unterreithmeier, Q. P., Weig, E. M., & Kotthaus, J. P. (2009). Universal transduction scheme for nanomechanical systems based on dielectric forces. Nature, 458(7241), 1001–1004.

    Article  Google Scholar 

  20. Schmid, S., Bagci, T., Zeuthen, E., Taylor, J. M., Herring, P. K. Cassidy, M. C., Marcus, C. M., Guillermo Villanueva, L., Amato, B., Boisen, A., Cheol Shin, Y., Kong, J., Sørensen, A. S., Usami, K., & Polzik, E. S. (2014). Single-layer graphene on silicon nitride micromembrane resonators. Journal of Applied Physics, 115(5), 054513.

    Article  Google Scholar 

  21. Bagci, T., Simonsen, A., Schmid, S., Villanueva, L. G., Zeuthen, E., Appel, J., Taylor, J. M., Sørensen, A., Usami, K., Schliesser, A., & Polzik, E. S. (2014). Optical detection of radio waves through a nanomechanical transducer. Nature, 507(7490), 81–85.

    Article  Google Scholar 

  22. Pandey, A. K., Gottlieb, O., Shtempluck, O., & Buks, E. (2010). Performance of an AuPd micromechanical resonator as a temperature sensor. Applied Physics Letters, 96, 203105.

    Article  Google Scholar 

  23. Larsen, T., Schmid, S., Gronberg, L., Niskanen, A. O., Hassel, J., Dohn, S., & Boisen, A. (2011). Ultrasensitive string-based temperature sensors. Applied Physics Letters, 98, 121901.

    Article  Google Scholar 

  24. Kruse, P. W., McGlauchlin, L. D., & McQuistan, R. B. (1962). Elements of infrared technology: Generation, transmission and detection. New York: Wiley.

    Google Scholar 

  25. Blaikie, A., Miller, D., & Alemán, B. J. (2019). A fast and sensitive room-temperature graphene nanomechanical bolometer. Nature Communications, 10(1), 1–8.

    Article  Google Scholar 

  26. Zhang, C., Giroux, M., Nour, T. A., & St-Gelais, R. (2020). Radiative heat transfer in freestanding silicon nitride membranes. Physical Review Applied, 14(2), 024072.

    Article  Google Scholar 

  27. Ventsel, E., & Krauthammer, T. (2001). Thin plates and shells : Theory, analysis, and applications. New York : Marcel Dekker.

    Book  Google Scholar 

  28. Rendón, M., & Makarov, N. (2014). Determination of the Si Young’s modulus between room and melt temperature using the impulse excitation technique. Physica Status Solidi (C), 11(1), 150–155.

    Article  Google Scholar 

  29. Chuang, W. -H., Luger, T., Fettig, R. K., & Ghodssi, R. (2004). Mechanical property characterization of LPCVD silicon nitride thin films at cryogenic temperatures. Journal of Microelectromechanical Systems, 13(5), 870–879.

    Article  Google Scholar 

  30. Pini, V., Tamayo, J., Gil-Santos, E., Ramos, D., Kosaka, P., Tong, H. -D., van Rijn, C., & Calleja, M. (2011). Shedding light on axial stress effect on resonance frequencies of nanocantilevers. ACS Nano, 5(6), 4269–4275.

    Article  Google Scholar 

  31. St-Gelais, R., Bernard, S., Reinhardt, C., & Sankey, J. C. (2019). Swept-frequency drumhead optomechanical resonators. ACS Photonics, 6(2), 525–530.

    Article  Google Scholar 

  32. Brawley, G. A., Vanner, M. R., Larsen, P. E., Schmid, S., Boisen, A., & Bowen, W. P. (2014). Non-linear optomechanical measurement of mechanical motion. arXiv:1404.5746.

    Google Scholar 

  33. Zhang, R., Ti, C., Davanço, M. I., Ren, Y., Aksyuk, V., Liu, Y., & Srinivasan, K. (2015). Integrated tuning fork nanocavity optomechanical transducers with high fMQM product and stress-engineered frequency tuning. Applied Physics Letters, 107(13), 131110.

    Article  Google Scholar 

  34. Gavartin, E., Verlot, P., & Kippenberg, T. J. (2012). A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nature Nanotechnology, 7, 509–514.

    Article  Google Scholar 

  35. Sadeghi, P., Demir, A., Guillermo Villanueva, L., Kähler, H., & Schmid, S. (2020). Frequency fluctuations in nanomechanical silicon nitride string resonators. Physical Review B, 102(21), 214106.

    Article  Google Scholar 

  36. Zhang, X. C., Myers, E. B., Sader, J. E., & Roukes, M. L. (2013). Nanomechanical torsional resonators for frequency-shift infrared thermal sensing. Nano Letters, 13(4), 1528–1534.

    Article  Google Scholar 

  37. Piller, M., Luhmann, N., Chien, M. -H., & Schmid, S. (2019). Nanoelectromechanical infrared detector. In Optical Sensing, Imaging, and Photon Counting: From X-rays to THz 2019 (Vol. 11088, p. 1108802). International Society for Optics and Photonics.

    Google Scholar 

  38. Larsen, T., Schmid, S., Villanueva, L. G., & Boisen, A. (2013). Photothermal analysis of individual nanoparticulate samples using micromechanical resonators. ACS Nano, 7(7), 6188–6193.

    Article  Google Scholar 

  39. Biswas, T. S., Miriyala, N., Doolin, C., Liu, X., Thundat, T., & Davis, J. P. (2014). Femtogram-scale photothermal spectroscopy of explosive molecules on nanostrings. Analytical Chemistry, 86, 11368–11372.

    Article  Google Scholar 

  40. Schmid, S., Wu, K., Larsen, P. E., Rindzevicius, T., Boisen, A. (2014). Low-power photothermal probing of single plasmonic nanostructures with nanomechanical string resonators. Nano Letters, 14, 2318–2321.

    Article  Google Scholar 

  41. Yamada, S., Schmid, S., Larsen, T., Hansen, O., & Boisen, A. (2013). Photothermal infrared spectroscopy of airborne samples with mechanical string resonators. Analytical Chemistry, 85(21), 10531–10535.

    Article  Google Scholar 

  42. Chien, M. -H., Brameshuber, M., Rossboth, B. K., Schütz, G. J. & Schmid, S. (2018). Single-molecule optical absorption imaging by nanomechanical photothermal sensing. Proceedings of the National Academy of Sciences, 115(44), 11150–11155.

    Article  Google Scholar 

  43. Jun, S. C., Huang, X. M. H., Manolidis, M., Zorman, C. A., Mehregany, M., & Hone, J. (2006). Electrothermal tuning of Al–SiC nanomechanical resonators. Nanotechnology, 17(5), 1506–1511.

    Article  Google Scholar 

  44. Vig, J. R., Filler, R. L., & Kim, Y. (1997). Application of quartz microresonators to uncooled infrared imaging arrays. In: Semiconductors and Semimetals (Vol. 47, pp. 269–296). Elsevier.

    Google Scholar 

  45. Snell, N., Zhang, C., Mu, G., Bouchard, A., & St-Gelais, R. (2022). Heat transport in silicon nitride drum resonators and its influence on thermal fluctuation-induced frequency noise. Physical Review Applied, 17(4), 044019.

    Article  Google Scholar 

  46. Piller, M., Sadeghi, P., West, R. G., Luhmann, N., Martini, P. Hansen, O., & Schmid, S. (2020). Thermal radiation dominated heat transfer in nanomechanical silicon nitride drum resonators. Applied Physics Letters, 117(3), 034101.

    Article  Google Scholar 

  47. Rogalski, A. (2019). Infrared and terahertz detectors. Boca Raton: CRC Press.

    Book  Google Scholar 

  48. Piller, M., Hiesberger, J., Wistrela, E., Martini, P., Luhmann, N., & Schmid, S. (2022). Thermal IR detection with nanoelectromechanical silicon nitride trampoline resonators. IEEE Sensors Journal, 23, 1–1.

    Google Scholar 

  49. Chien, M. -H. (2021). Nanoelectromechanical photothermal microscopy and spectroscopy for single-molecule detection and imaging at room temperature. PhD thesis, Technische Universität Wien.

    Google Scholar 

  50. Kurek, M., Carnoy, M., Larsen, P. E., Nielsen, L. H., Hansen, O., Rades, T., Schmid, S., & Boisen, A. (2017). Nanomechanical infrared spectroscopy with vibrating filters for pharmaceutical analysis. Angewandte Chemie, 129(14), 3959–3963.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmid, S., Villanueva, L.G., Roukes, M.L. (2023). Responsivity and Sensitivity. In: Fundamentals of Nanomechanical Resonators. Springer, Cham. https://doi.org/10.1007/978-3-031-29628-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29628-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29627-7

  • Online ISBN: 978-3-031-29628-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics