Skip to main content

Batteries, Energy Storage Technologies, Energy-Efficient Systems, Power Conversion Topologies, and Related Control Techniques

  • Chapter
  • First Online:
Recent Advances in Energy Systems, Power and Related Smart Technologies

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 472))

Abstract

Climate change has become one of the most important global challenges that both developing and developed nations face in the 21st Century. In the transportation sector, electric vehicles (xEV) have emerged as a viable solution to fight climate change. However, the short longevity of the battery system, and their limited range which depends on the battery performance, remains a drawback. In the electric power sector, renewable energy sources such as solar and wind have emerged as strong energy assets, but these sources are intermittent and cause fluctuations on the electrical power grid. To solve these issues, renewable energy systems are sometimes coupled with battery energy storage system (BESS). This chapter reviews batteries, energy storage technologies, energy-efficient systems, power conversion topologies, and related control techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fairley, P.: The troubled link between gas and electricity grids. IEEE Spectrum 53(6), 11–12 (2016). http://ieeexplore.ieee.org/document/7473135/?ar-number=7473135&tag=1

  2. https://globenewswire.com/news-release/2016/06/13/848095/0/en/Global-Battery-Man-agement-System-Market-2016-2022-Johnson-Matthey-Dominates-the-7-25-Market.html

  3. St. John, J.: California utilities are fast-tracking battery projects to manage Aliso Canyon Shortfall. Greentech Med. (2016). https://www.greentechmedia.com/articles/read/california-utilities-are-fast-tracking-battery-projects-to-manage-aliso-can

  4. Barsukov, Y., Qian, J.: Battery Power Management for Portable Devices, pp. 111–138. ArtechHouse, Boston MA (2013)

    Google Scholar 

  5. Application Note “AN2013-02” V2.0, Infineon, (2013). https://www.infineon.com/dgdl/Infineon-MOSFET_Small_Signal_selection_of_the_MOSFET_for_faster_balancing_of_Li-Ion_batteries-AN-v01_00-EN.pdf?fileId=db3a30433cfb5caa013cfbf079c10255

  6. Kim, H.-S., Park, K.-B., Park, S.-H., Moon, G.-W., Youn, M.-J.: A new two-switch flyback battery equalizer with low voltage stress on the switches. IEEE Energy Conver Congress Expos 2009, 511–516 (2009)

    Google Scholar 

  7. Mubenga, N.S., Linkous, Z., Stuart, T.: A bilevel equalizer for large lithium-ion batteries. Batteries. Accepted for publication (2017) https://www.mdpi.com/2313-0105/3/4/39

  8. Andreas, D.: White Paper-Dissipative vs. Non-Dissipative Balancing (a.k.a: Passive vs. Active Balancing) (2010). http://liionbms.com/php/wp_passive_active_balancing.php

  9. Mubenga, N.: A battery management system for large Li-ion batteries with Bi-level equalization. Dissertation, University of Toledo, Ohio (2017). http://rave.ohiolink.edu/etdc/view?acc_num=toledo1513207337549147

  10. Tkarcher: Battery with polymer separator. https://upload.wikimedia.org/wikipedia/commons/c/c4/Battery_with_polymer_separator.svg. Attribution: Tkarcher, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons

  11. Mubenga, N.S., Stuart, T.: A low cost hybrid equalizer for Lithium Ion BESS. In: 2018 IEEE Clemson University Power Systems Conference (IEEE PSC18), Clemson, SC (2018)

    Google Scholar 

  12. Mubenga, N.S., Stuart, T.: A bilevel equalizer for lithium ion batteries. In: IEEE 2018 National Aerospace and Electronics Conference (NAECON 2018), Dayton, OH, USA (2018). https://ieeexplore.ieee.org/document/8556725

  13. Mubenga, N.S., Sharma, K., Stuart, T.: A bilevel equalizer to boost the capacity of second life Li Ion batteries. Batteries (2019). https://www.mdpi.com/2313-0105/5/3/55

  14. Mubenga, N.S., Salami, B., Stuart, T.: Bilevel vs. passive equalizers for second life EV batteries. Electricity 2(1) (2021), 63–76. Retrieved online February 7. 2021 from https://www.mdpi.com/2673-4826/2/1/4/htm

  15. Salami, B.: The efficiency measuring apparatus for li-ion battery equalizers. Master Thesis, University of Toledo, Ohio (2021). http://rave.ohiolink.edu/etdc/view?acc_num=toledo1619460723390441

  16. Mubenga, N.S.: The efficiency measuring apparatus for the design of li-ion batteries equalizers. In: NAECON 2021—IEEE National Aerospace and Electronics Conference, pp. 18–24 (2021). https://doi.org/10.1109/NAECON49338.2021.9696391

  17. Andreas, D.: Battery management systems for large lithium-ion battery packs, pp. 35–87, ArtechHouse, Boston MA (2010)

    Google Scholar 

  18. Lindemark, B.: Individual cell voltage equalizers (ICE) for reliable battery performance. In: Proceedings of 13th Annual International Telecommunication Energy Conference, pp. 196–201

    Google Scholar 

  19. Williamson, S.S.: Design, testing, and validation of a simplified control scheme for a novel plug-in hybrid electric vehicle battery cell equalizer. IEEE Trans. Ind. Electron. 57(12), 3956–3962 (2010)

    Article  Google Scholar 

  20. Baronti, F., Fantechi, G., Leonardi, E., Roncella, R., Saletti, R.: Hierarchical platform for monitoring, managing and charge balancing of LiPo batteries. In: Proceedings of Vehicle Power Propulsion Conference, pp. 1–6 (2011)

    Google Scholar 

  21. Lee, K.M., Lee, S.W., Choi, Y.G., Kang, B.: Active balancing of Li-ion battery cells using transformer as energy carrier. IEEE Trans. Ind. Electron. 64(2), 1251–1257 (2017)

    Article  Google Scholar 

  22. Zhang, D.-A., Zhu, G-R, He, S.J, Qiu, S., Ma, Y., Wu, Q.-M., Chen, W.: Balancing control strategy for li-ion batteries string based on dynamic balanced point. Energies 8, 1830–1847 (2015). http://www.mdpi.com/1996-1073/8/3/1830. Accessed July 2017

  23. Lee, K.M., Chung, Y.C., Sung, C.H., Kang, B.: Active cell balancing of Li-ion batteries using LC series resonant circuit. IEEE Trans. Ind. Electron. 62(9), 5491–5501 (2015)

    Google Scholar 

  24. Shang, Y., Xia, B., Lu, F., Zhang, C., Cui, N., Mi, C.C.: A switched-coupling-capacitor equalizer for series-connected battery strings. IEEE Trans. Power Electron. 32(10), 7694–7706 (2017)

    Article  Google Scholar 

  25. Baronti, F., Fantechi, G., Roncella, R., Saletti, R.: High-efficiency digitally controlled charge equalizer for series-connected cells based on switching converter and super-capacitor. IEEE Trans. Ind. Inf. 9(2), 1139–1147 (2013)

    Article  Google Scholar 

  26. Cadar, D., Petreus, D., Patarau, T., Palaghita, N.: Active balancing method for battery cell equalization. In: ACTA Technica Napocensis Electronics and Telecommunications, vol. 51, no. 2 (2010). https://users.utcluj.ro/~ATN/papers/ATN_2_2010_1.pdf. Accessed July 2017

  27. Lee, Y., Jeon, S., Lee, H., Bae, S.: Comparison on cell balancing methods for energy storage applications. Ind. J. Sci. Technol. 9(17) (2016)

    Google Scholar 

  28. Einhorn, M., Roessler, W., Fleig, J.: Improved performance of serially connected Li-ion batteries with active cell balancing in electric vehicles. IEEE Trans. Veh. Technol. 60(6), 2448–2457 (2011)

    Article  Google Scholar 

  29. Park, H.S., Kim, C.E., Kim, C.H., Moon, G.W., Lee, J.H.: A modularized charge equalizer for an HEV lithium-ion battery string. IEEE Trans. Ind. Electron. 56(5), 1464–1476 (2009)

    Article  Google Scholar 

  30. Kutkut, N.H., Divan, D.M.: Dynamic equalization techniques for series battery stacks. In: Proceedings of 18th Annual International Telecommunication Energy Conference, pp. 514–521

    Google Scholar 

  31. Moore, S.W., Schneider, P.J.: A review of cell equalization methods for lithium ion and lithium polymer battery systems. In: Proceedings of SAE World Congress Doc. 2001-01-0959 (2001)

    Google Scholar 

  32. Lukic, S.M., Cao, J., Bansal, R.C., Rodriguez, R., Emadi, A.: Energy storage systems for automotive applications. IEEE Trans. Ind. Electron. 55(6), 2258–2267 (2008)

    Article  Google Scholar 

  33. Kutkut, N.H., Wiegman, H.L.N., Divan, D.M., Novotny, D.W.: Design considerations for charge equalization of an electric vehicle battery system. IEEE Trans. Ind. Appl. 35(1), 28–35 (1999)

    Article  Google Scholar 

  34. Sakamoto, H., Murata, K., Sakai, E., Nishijima, K.: Balanced charging of series connected battery cells. In: Proceedings of 22nd Annual International Telecommunication Energy Conference, pp. 311–315

    Google Scholar 

  35. Gottwald, T., Ye, Z., Stuart, T.: Equalization of EV and HEV batteries with a ramp converter. IEEE Trans. Aerosp. Electron. Syst. 33(1), 307–312 (1997)

    Article  Google Scholar 

  36. Tang, M., Stuart, T.: Selective buck-boost equalizer for series battery packs. IEEE Trans. Aerosp. Electron. Syst. 36(1), 201–211 (2000)

    Article  Google Scholar 

  37. Chen, T.C., Guey, Z.J.: Charge equalizer or series of connected battery strings. U.S. Patent 6 008 623 (1999)

    Google Scholar 

  38. Schmidt, H., Siedle, C.: The charge equalizer—a new system to extend battery life-time in photovoltaic systems, UPS and electric vehicles. In: Proceedings of 15th Annual International Telecommunication Energy Conference, pp. 146151

    Google Scholar 

  39. Einhorn, M., Guertlschmid, W., Blochberger, T., Kumpusch, R., Permann, R., Conte, F., Kral, C., Fleig, J.: A current equalization method for serially connected battery cells using a single power converter for eachcell. IEEE Trans. Veh. Technol. 60(12), 4227–4237 (2011)

    Google Scholar 

  40. Stuart, T.A., Zhu, W.: Modularized battery management for large lithiumion-cells. J. Power Sour. 196, 458–464 (2011)

    Google Scholar 

  41. Kim, M.-Y., Kim, J.-W., Kim, C.-H., Cho, S.-Y., Moon, G.-W.: Automatic charge equalization circuit based on regulated voltage source for series connected lithium-ion batteries. In: Proceedings of 8th International Conference on Power Electron .ECCE Asia, pp. 2248–2255 (2011)

    Google Scholar 

  42. Oriti, G., Julian, A.L., Norgaard, P.: Battery management system with cell equalizer for multi-cell battery packs. In: 2014 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 900–905 (2014)

    Google Scholar 

  43. Zhu, W.: An improved targeted equalizer for battery management systems. Master Thesis, University of Toledo, Ohio, USA (2008)

    Google Scholar 

  44. Park, H.-S., Kim, C.-E., Kim, C.-H., Moon, G.-W., Lee, J.-H.: A modularized charge equalizer for an HEV lithium-ion battery string. IEEETrans. Ind. Electron. 56(5), 1464–1476 (2009)

    Article  Google Scholar 

  45. Karnjanapiboon, C., Jirasereeamornkul, K., Monyakul, V.: High efficiency battery management system for serially connected battery string. In: Proceedings of IEEE International Symposium on Industrial Electronics, pp. 1504–1509 (2009)

    Google Scholar 

  46. Pascual, C., Krein, P.T.: Switched capacitor system for automatic series battery equalization. In: Proceedings 12th Annual IEEE Applied Power Electronics Conference Exposition, pp. 848–854

    Google Scholar 

  47. Baughman, A.C., Ferdowsi, M.: Double-tiered switched-capacitor battery charge equalization technique. IEEE Trans. Ind. Electron. 55(6), 2277–2285 (2008)

    Article  Google Scholar 

  48. Lee, Y.S., Cheng, G.T.: Quasi-resonant zero-current-switching bidirectional converter for battery equalization applications. IEEE Trans. Power Electron. 21(5), 1213–1224 (2006)

    Article  Google Scholar 

  49. Lee, Y.S., Cheng, M.W.: Intelligent control battery equalization for series connected lithium-ion battery strings. IEEE Trans. Ind. Electron. 52(5), 1297–1307 (2005)

    Article  Google Scholar 

  50. Manenti, A., Abba, A., Merati, A., Savaresi, S.M., Geraci, A.: A new BMS architecture based on cell redundancy. IEEE Trans. Ind. Electron. 58(9), 4314–4322 (2011)

    Article  Google Scholar 

  51. Kutkut, N., Divan, D.: Dynamic equalization techniques for series battery stacks. In: Proceedings of 18th International Telecommun Energy Conference, pp. 514–521 (1996)

    Google Scholar 

  52. Moore, S.W., Schneider, P.J.: A review of cell equalization methods for lithium ion and lithium polymer battery systems. In: Proceedings of SAE World Congress, Paper 2001-01-0959

    Google Scholar 

  53. Cao, J., Schofield, N., Emadi, A.: Battery balancing methods: a comprehensive review. In: Proceedings of IEEE Vehicle Power and Propulsion Conference, pp. 1–6 (2008)

    Google Scholar 

  54. Lindemark, B.: Individual cell voltage equalizers (ICE) for reliable battery performance. In: Proceedings of International Telecommunications Energy Conference, pp. 196–201 (1991)

    Google Scholar 

  55. Baronti, F., Fantechi, G., Roncella, R., Saletti, R.: Design of a module switch for battery pack reconfiguration in high-power applications. In: Proceedings of IEEE International Symposium on Industrial Electronics, pp. 1330–1335 (2012)

    Google Scholar 

  56. Datasheet “LTC3300–1 Datasheet”, document number 33001fb, Linear Technology accessed online at www.linear.com/LTC3300-1

  57. Datasheet “EMB1499Q”, Document# SNOSCV7B”, Rev 9/13 Texas Instrument, September 2013. Accessible online at http://www.ti.com/product/EMB1499Q

  58. Mubenga, N.S.: Efficiency Measuring Apparatus, Active Equalizer Inductor Design Tool and Equalizer Design App. U.S. Provisional patent 63/167,471 (2021)

    Google Scholar 

  59. Stuart, T.A.: A Bilevel Equalizer for Battery Cell Charge Management, U.S. Provisional Patent Application # 62/287,575 (2016)

    Google Scholar 

  60. Voelker, T.: Fisher Scientific “Trace Degradation Analysis of Lithium Ion Battery” Sunnyvale, California, March 2014. https://tools.thermofisher.com/content/sfs/brochures/AR-Lithium-Ion-Battery-Degradation-RandD-Mag-042214.pdf

  61. Smith, K., Wood, E., Santhanagopalan, S., Kim, G.H., Shi, Y., Pesaran, A.: Predictive Models of Li-Ion Battery Lifetime National Renewable Energy Laboratory, NREL/PR-5400–64622, Advanced Automotive Battery Conference and Large Li-Ion Battery Symposium, Detroit, Michigan, June 15–19 (2015)

    Google Scholar 

  62. Bartlett, A.: Electrochemical model-based state of charge and state of health estimation of Lithium Ion batteries. Dissertation, The Ohio State University, Ohio (2015)

    Google Scholar 

  63. Zhang, Y., Wang, C.Y., Tang, X.: Cycling degradation of an automotive LiFePO4 lithium-ion batteries. J. Power Sour. 196(2011), 1513–1520 (2010)

    Google Scholar 

  64. “BU808-b: What causes Li-ion to Die” Battery University http://batteryuniversity.com/learn/article/bu_808b_what_causes_li_ion_to_die

  65. Rastler, D.: Electricity Energy Storage Technology Options: A White paper Primer on Applications, Costs, and Benefits 1020676, EPRI (2010)

    Google Scholar 

  66. United States Advanced Batteries Consortium (USABC) Website. Online retrieved on 10/24/2017. https://uscar.org/usabc/

  67. “PHEV Battery Goals” United States Advanced Batteries Consortium, USA. https://uscar.org/usabc/#246-246-top

  68. “EV Battery Goals” United States Advanced Batteries Consortium, USA. https://uscar.org/usabc/#246-246-top

  69. “48V HEV Battery Goals” United States Advanced Batteries Consortium, USA. https://uscar.org/usabc/#246-246-top

  70. “12V Start Stop Vehicles Battery goals” United States Advanced Batteries Consortium , USA. https://uscar.org/usabc/#246-246-top

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngalula Sandrine Mubenga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mubenga, N.S. (2024). Batteries, Energy Storage Technologies, Energy-Efficient Systems, Power Conversion Topologies, and Related Control Techniques. In: Kyamakya, K., Bokoro, P.N. (eds) Recent Advances in Energy Systems, Power and Related Smart Technologies. Studies in Systems, Decision and Control, vol 472. Springer, Cham. https://doi.org/10.1007/978-3-031-29586-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29586-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29585-0

  • Online ISBN: 978-3-031-29586-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics