Skip to main content

Peptide Amphiphile Nanomaterials

  • Chapter
  • First Online:
Peptide Bionanomaterials

Abstract

Peptide amphiphiles (PAs) have emerged as an essential class of peptides, particularly in the bottom-up fabrication of innovative soft materials. They have potential in many vital applications across various fields of science and technology. A significant number of reports involving design, self-assembly, and applications of PAs have emerged over the last couple of decades. Thus, it is crucial to infer or analyze the outcomes of all these studies, which will help provide an overview of the work done and lead a guiding pathway to future studies in this area. This chapter discusses various classes of PAs, their applications, and a preliminary guideline on the design principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams DJ (2018) Does drying affect gel networks? Gels 4(2):32

    Article  PubMed  PubMed Central  Google Scholar 

  • Adams DJ, Butler MF, Frith WJ, Kirkland M, Mullen L, Sanderson P (2009) A new method for maintaining homogeneity during liquid–hydrogel transitions using low molecular weight hydrogelators. Soft Matter 5(9):1856–1862

    Article  CAS  Google Scholar 

  • Ahmed S, Amba Sankar KN, Pramanik B, Mohanta K, Das D (2018) Solvent directed morphogenesis and electrical properties of a peptide–perylenediimide conjugate. Langmuir 34(28):8355–8364

    Article  CAS  PubMed  Google Scholar 

  • Ahmed S, Mondal JH, Behera N, Das D (2013) Self-assembly of peptide-amphiphile forming helical nanofibers and in situ template synthesis of uniform mesoporous Single Wall silica nanotubes. Langmuir 29(46):14274–14283

    Article  CAS  PubMed  Google Scholar 

  • Ahmed S, Pramanik B, Sankar KNA, Srivastava A, Singha N, Dowari P, Srivastava A, Mohanta K, Debnath A, Das D (2017) Solvent assisted tuning of morphology of a peptide-perylenediimide conjugate: helical fibers to nano-rings and their differential semiconductivity. Sci Rep 7(1):9485

    Article  PubMed  PubMed Central  Google Scholar 

  • Alakpa Enateri V, Jayawarna V, Lampel A, Burgess Karl V, West Christopher C, Bakker Sanne CJ, Roy S, Javid N, Fleming S, Lamprou Dimitris A, Yang J, Miller A, Urquhart Andrew J, Frederix Pim WJM, Hunt Neil T, Péault B, Ulijn Rein V, Dalby Matthew J (2016) Tunable supramolecular hydrogels for selection of lineage-guiding metabolites in stem cell cultures. Chem 1:298–319

    Article  Google Scholar 

  • Ariga K, Kikuchi J-i, Naito M, Koyama E, Yamada N (2000) Modulated supramolecular assemblies composed of tripeptide derivatives: formation of micrometer-scale rods, nanometer-size needles, and regular patterns with molecular-level flatness from the same compound. Langmuir 16(11):4929–4939

    Article  CAS  Google Scholar 

  • Bal S, Ghosh C, Ghosh T, Vijayaraghavan RK, Das D (2020) Non-equilibrium polymerization of cross-β amyloid peptides for temporal control of electronic properties. Angew Chem Int Ed 59(32):13506–13510

    Article  CAS  Google Scholar 

  • Bartocci S, Berrocal JA, Guarracino P, Grillaud M, Franco L, Mba M (2018) Peptide-driven charge-transfer Organogels built from synergetic hydrogen bonding and pyrene–Naphthalenediimide donor–acceptor interactions. Chem Eur J 24(12):2920–2928

    Article  CAS  PubMed  Google Scholar 

  • Castillo Diaz LA, Elsawy M, Saiani A, Gough JE, Miller AF (2016) Osteogenic differentiation of human mesenchymal stem cells promotes mineralization within a biodegradable peptide hydrogel. J Tissue Eng 7:1–5

    Article  Google Scholar 

  • Chapman R, Danial M, Koh ML, Jolliffe KA, Perrier S (2012) Design and properties of functional nanotubes from the self-assembly of cyclic peptide templates. Chem Soc Rev 41(18):6023–6041

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee A, Afrose SP, Ahmed S, Venugopal A, Das D (2020) Cross-β amyloid nanotubes for hydrolase–peroxidase cascade reactions. Chem Commun 56(57):7869–7872

    Article  CAS  Google Scholar 

  • Chen Y, Yang Y, Orr AA, Makam P, Redko B, Haimov E, Wang Y, Shimon LJW, Rencus-Lazar S, Ju M, Tamamis P, Dong H, Gazit E (2021) Self-assembled peptide nano-superstructure towards enzyme mimicking hydrolysis. Angew Chem Int Ed 60(31):17164–17170

    Article  CAS  Google Scholar 

  • Chowdhuri S, Ghosh M, Adler-Abramovich L, Das D (2021) The effects of a short self-assembling peptide on the physical and biological properties of biopolymer hydrogels. 13(10):1602

    Google Scholar 

  • Chung EK, Lee E, Lim Y-b, Lee M (2010) Cyclic peptide facial amphiphile Preprogrammed to self-assemble into bioactive peptide capsules. Chem Eur J 16(18):5305–5309

    Article  CAS  PubMed  Google Scholar 

  • Chung W-J, Kwon K-Y, Song J, Lee S-W (2011) Evolutionary screening of collagen-like peptides that nucleate hydroxyapatite crystals. Langmuir 27(12):7620–7628

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Webber MJ, Stupp SI (2010a) Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Pep Sci 94(1):1–18

    Article  CAS  Google Scholar 

  • Cui H, Webber MJ, Stupp SI (2010b) Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers 94(1):1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das BK, Pramanik B, Chowdhuri S, Scherman OA, Das D (2020) Light-triggered syneresis of a water insoluble peptide-hydrogel effectively removes small molecule waste contaminants. Chem Commun 56(23):3393–3396

    Article  CAS  Google Scholar 

  • Das D, Assaf KI, Nau WM (2019) Applications of cucurbiturils in medicinal chemistry and chemical biology. Front Chem 7:619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das D, Dasgupta A, Roy S, Mitra RN, Debnath S, Das PK (2006) Water gelation of an amino acid-based amphiphile. Chem Eur J 12(19):5068–5074

    Article  CAS  PubMed  Google Scholar 

  • Das D, Scherman OA (2011) Cucurbituril: at the Interface of small molecule host–guest chemistry and dynamic aggregates. Isr J Chem 51(5–6):537–550

    Article  CAS  Google Scholar 

  • Das D, Tnimov Z, Nguyen UTT, Thimmaiah G, Lo H, Abankwa D, Wu Y, Goody RS, Waldmann H, Alexandrov K (2012) Flexible and general synthesis of functionalized phosphoisoprenoids for the study of prenylation in vivo and in vitro. Chembiochem 13(5):674–683

    Article  CAS  PubMed  Google Scholar 

  • Das S, Das D (2021) Rational design of peptide-based smart hydrogels for therapeutic applications. Front Chem 9:770102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Das P, Dowari P, Das BK, Das D (2022a) Bi-directional feedback controlled transience in cucurbituril based tandem nanozyme. J Colloid Interface Sci 614:172–180

    Article  CAS  PubMed  Google Scholar 

  • Das S, Das T, Das P, Das D (2022b) Controlling the lifetime of cucurbit[8]uril based self-abolishing nanozymes. Chem Sci

    Google Scholar 

  • Dasgupta A (2016) Exploring architectures at the nanoscale: the interplay between hydrophobic twin lipid chains and head groups of designer peptide amphiphiles in the self-assembly process and application. Soft Matter 12(19):4352–4360

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta A, Das D (2019) Designer peptide amphiphiles: self-assembly to applications. Langmuir 35(33):10704–10724

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta A, Mondal JH, Das D (2013) Peptide hydrogels. RSC. Advances 3(24):9117–9149

    CAS  Google Scholar 

  • Dehsorkhi A, Castelletto V, Hamley IW (2014) Self-assembling amphiphilic peptides. J Pep Sci 20(7):453–467

    Article  CAS  Google Scholar 

  • Dehsorkhi A, Hamley IW (2014) Silica templating of a self-assembling peptide amphiphile that forms nanotapes. Soft Matter 10(11):1660–1664

    Article  CAS  PubMed  Google Scholar 

  • Deming TJ (2005) Polypeptide hydrogels via a unique assembly mechanism. Soft Matter 1(1):28–35

    Article  CAS  PubMed  Google Scholar 

  • Ding X, Zhao H, Li Y, Lee AL, Li Z, Fu M, Li C, Yang YY, Yuan P (2020) Synthetic peptide hydrogels as 3D scaffolds for tissue engineering. Ad Drug Deliv Rev 160:78–104

    Article  CAS  Google Scholar 

  • Dougherty DA (2013) The cation−π interaction. Acc Chem Res 46(4):885–893

    Article  CAS  PubMed  Google Scholar 

  • Dowari P, Das S, Pramanik B, Das D (2019) pH clock instructed transient supramolecular peptide amphiphile and its vesicular assembly. Chem Commun 55(94):14119–14122

    Article  CAS  Google Scholar 

  • Dowari P, Kumar Baroi M, Das T, Kanti Das B, Das S, Chowdhuri S, Garg A, Debnath A, Das D (2022) Development of a hydrolase mimicking peptide amphiphile and its immobilization on silica surface for stereoselective and enhanced catalysis. J Colloids Interface Sci 618:98–110

    Article  CAS  Google Scholar 

  • Draper ER, Adams DJ (2017) Low-molecular-weight gels: the state of the art. Chem 3(3):390–410

    Article  CAS  Google Scholar 

  • Du X, Zhou J, Shi J, Xu B (2015) Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem Rev 115(24):13165–13307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  PubMed  Google Scholar 

  • Falcone N, Kraatz H-B (2018) Supramolecular assembly of peptide and metallopeptide gelators and their stimuli-responsive properties in biomedical applications. Chem Eur J 24(54):14316–14328

    Article  CAS  PubMed  Google Scholar 

  • Faul CFJ, Antonietti M (2003) Ionic self-assembly: facile synthesis of supramolecular materials. Adv Mater 15(9):673–683

    Article  CAS  Google Scholar 

  • Fleming S, Ulijn RV (2014) Design of nanostructures based on aromatic peptide amphiphiles. Chem Soc Rev 43(23):8150–8177

    Article  CAS  PubMed  Google Scholar 

  • Fletcher JT, Finlay JA, Callow ME, Callow JA, Ghadiri MR (2007) A combinatorial approach to the discovery of biocidal six-residue cyclic d,l-α-peptides against the bacteria methicillin-resistant Staphylococcus aureus (MRSA) and E. coli and the biofouling algae Ulva linza and Navicula perminuta. Chem Eur J 13(14):4008–4013

    Article  CAS  PubMed  Google Scholar 

  • Fujimura F, Horikawa Y, Morita T, Sugiyama J, Kimura S (2007) Double assembly composed of lectin association with columnar molecular assembly of cyclic tri-β-peptide having sugar units. Biomacromolecules 8(2):611–616

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Zhan J, Yang Z (2020) Enzyme-instructed self-assembly (EISA) and hydrogelation of peptides. Adv Mater 32(3):1805798

    Article  CAS  Google Scholar 

  • Geisler IM, Schneider JP (2012) Evolution-based design of an injectable hydrogel. Adv Funct Mater 22(3):529–537

    Article  CAS  Google Scholar 

  • Ghosh M, Halperin-Sternfeld M, Grigoriants I, Lee J, Nam KT, Adler-Abramovich L (2017) Arginine-presenting peptide hydrogels decorated with hydroxyapatite as biomimetic scaffolds for bone regeneration. Biomacromolecules 18(11):3541–3550

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Wu Y-W, Das D, Delon C, Cramer J, Yu S, Thuns S, Lupilova N, Waldmann H, Brunsveld L, Goody RS, Alexandrov K, Blankenfeldt W (2008) Structures of RabGGTase–substrate/product complexes provide insights into the evolution of protein prenylation. EMBO J 27(18):2444–2456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GP (2015) Peptide toxicity prediction. Methods Mol Biol 1268:143–157

    Article  CAS  PubMed  Google Scholar 

  • Hai Z, Li J, Wu J, Xu J, Liang G (2017) Alkaline phosphatase-triggered simultaneous hydrogelation and chemiluminescence. J Am Chem Soc 139(3):1041–1044

    Article  CAS  PubMed  Google Scholar 

  • Hamley IW (2011) Self-assembly of amphiphilic peptides. Soft Matter 7(9):4122–4138

    Article  CAS  Google Scholar 

  • Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294(5547):1684–1688

    Article  CAS  PubMed  Google Scholar 

  • He H, Wang H, Zhou N, Yang D, Xu B (2018) Branched peptides for enzymatic supramolecular hydrogelation. Chem Commun 54(1):86–89

    Article  CAS  Google Scholar 

  • Hendricks MP, Sato K, Palmer LC, Stupp SI (2017) Supramolecular assembly of peptide amphiphiles. Acc Chem Res 50(10):2440–2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hourani R, Zhang C, van der Weegen R, Ruiz L, Li C, Keten S, Helms BA, Xu T (2011) Processable cyclic peptide nanotubes with tunable interiors. J Am Chem Soc 133(39):15296–15299

    Article  CAS  PubMed  Google Scholar 

  • Hu Y-Y, Yusufoglu Y, Kanapathipillai M, Yang C-Y, Wu Y, Thiyagarajan P, Deming T, Akinc M, Schmidt-Rohr K, Mallapragada S (2009) Self-assembled calcium phosphate nanocomposites using block copolypeptide templates. Soft Matter 5(21):4311–4320

    Article  CAS  Google Scholar 

  • Huang T, Qian Y, Fu X, Huang S, Li Y, Zhou C (2020) De novo design of triblock amphiphilic short antimicrobial peptides. ACS Appl Biomater 2(9):3988–3992

    CAS  Google Scholar 

  • Hunter CA, Sanders JKM (1990) The nature of .pi.-.pi. interactions. J Am Chem Soc 112(14):5525–5534

    Article  CAS  Google Scholar 

  • Ikeda M, Tanida T, Yoshii T, Hamachi I (2011) Rational molecular design of stimulus-responsive supramolecular hydrogels based on dipeptides. Adv Mater 23(25):2819–2822

    Article  CAS  PubMed  Google Scholar 

  • Israelachvili J (2011a) Intermolecular and surface forces. Academic Press, San Diego

    Google Scholar 

  • Israelachvili JN (2011b) 20 - soft and biological structures. In: Israelachvili JN (ed) Intermolecular and surface forces, 3rd edn. Academic Press, San Diego, pp 535–576

    Google Scholar 

  • Jain R, Khandelwal G, Roy S (2019) Unraveling the design rules in ultrashort amyloid-based peptide assemblies toward shape-controlled synthesis of gold nanoparticles. Langmuir 35(17):5878–5889

    Article  CAS  PubMed  Google Scholar 

  • Jalani K, Kumar M, George SJ (2013) Mixed donor–acceptor charge-transfer stacks formed via hierarchical self-assembly of a non-covalent amphiphilic foldamer. Chem Commun 49(45):5174–5176

    Article  CAS  Google Scholar 

  • Jiao D, Geng J, Loh XJ, Das D, Lee T-C, Scherman OA (2012) Supramolecular peptide amphiphile vesicles through host–guest complexation. Angew Chem Int Ed 51(38):9633–9637

    Article  CAS  Google Scholar 

  • Jin H, Wan C, Zou Z, Zhao G, Zhang L, Geng Y, Chen T, Huang A, Jiang F, Feng J-P, Lovell JF, Chen J, Wu G, Yang K (2018) Tumor ablation and therapeutic immunity induction by an injectable peptide hydrogel. ACS Nano 12(4):3295–3310

    Article  CAS  PubMed  Google Scholar 

  • Ju X, Chen J, Zhou M, Zhu M, Li Z, Gao S, Ou J, Xu D, Wu M, Jiang S, Hu Y, Tian Y, Niu Z (2020) Combating pseudomonas aeruginosa biofilms by a chitosan-PEG-peptide conjugate via changes in assembled structure. ACS Appl Mater Interfaces 12(12):13731–13738

    Article  CAS  PubMed  Google Scholar 

  • Kabiri M, Unsworth LD (2014) Application of isothermal titration calorimetry for characterizing thermodynamic parameters of biomolecular interactions: peptide self-assembly and protein adsorption case studies. Biomacromolecules 15(10):3463–3473

    Article  CAS  PubMed  Google Scholar 

  • Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky AJ (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci 99(15):9996–10001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korevaar PA, Newcomb CJ, Meijer EW, Stupp SI (2014) Pathway selection in peptide amphiphile assembly. J Am Chem Soc 136(24):8540–8543

    Article  CAS  PubMed  Google Scholar 

  • Koutsopoulos S, Unsworth LD, Nagai Y, Zhang S (2009) Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Proc Natl Acad Sci:2623–2628

    Google Scholar 

  • Kretsinger JK, Haines LA, Ozbas B, Pochan DJ, Schneider JP (2005) Cytocompatibility of self-assembled beta-hairpin peptide hydrogel surfaces. Biomaterials 26(25):5177–5186

    Article  CAS  PubMed  Google Scholar 

  • Larsen TH, Branco MC, Rajagopal K, Schneider JP, Furst EM (2009) Sequence-dependent gelation kinetics of β-hairpin peptide hydrogels. Macromolecules 42(21):8443–8450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin A, Hakala TA, Schnaider L, Bernardes GJL, Gazit E, Knowles TPJ (2020) Biomimetic peptide self-assembly for functional materials. Nat Rev Chem 4(11):615–634

    Article  CAS  Google Scholar 

  • Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1(12):16071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhu M, Wang M, Qi W, Su R, He Z (2020) Molecularly imprinted peptide-based enzyme mimics with enhanced activity and specificity. Soft Matter 16(30):7033–7039

    Article  CAS  PubMed  Google Scholar 

  • Li X, Sun Q, Li Q, Kawazoe N, Chen G (2018) Functional hydrogels with Tunable structures and properties for tissue engineering applications. Front Chem 6:499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Xu K, Wang H, Jeremy Tan PK, Fan W, Venkatraman SS, Li L, Yang Y-Y (2009) Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol 4(7):457–463

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Wong-Noonan S, Pham NB, Pradhan I, Spigelmyer A, Funk R, Nedzesky J, Cohen H, Gawalt ES, Fan Y, Meng WS (2019) A genetically engineered Fc-binding amphiphilic polypeptide for congregating antibodies in vivo. Acta Biomater 88:211–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Wang X, Wang X, Ren H, He J, Qiao L, Cui F-Z (2013) Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro. Acta Biomater 9(6):6798–6805

    Article  CAS  PubMed  Google Scholar 

  • Loo Y, Wong Y-C, Cai EZ, Ang C-H, Raju A, Lakshmanan A, Koh AG, Zhou HJ, Lim T-C, Moochhala SM, Hauser CAE (2014) Ultrashort peptide nanofibrous hydrogels for the acceleration of healing of burn wounds. Biomaterials 35:4805–4814

    Article  CAS  PubMed  Google Scholar 

  • Luo Z, Yue Y, Zhang Y, Yuan X, Gong J, Wang L, He B, Liu Z, Sun Y, Liu J, Hu M, Zheng J (2013) Designer D-form self-assembling peptide nanofiber scaffolds for 3-dimensional cell cultures. Biomaterials 34:4902–4913

    Article  CAS  PubMed  Google Scholar 

  • Mei L, Xu K, Zhai Z, He S, Zhu T, Zhong W (2019) Doxorubicin-reinforced supramolecular hydrogels of RGD-derived peptide conjugates for pH-responsive drug delivery. Org Biomol Chem 17(15):3853–3860

    Article  CAS  PubMed  Google Scholar 

  • Meng Q, Kou Y, Ma X, Liang Y, Guo L, Ni C, Liu K (2012) Tunable self-assembled peptide amphiphile nanostructures. Langmuir 28(11):5017–5022

    Article  CAS  PubMed  Google Scholar 

  • Miao X, Cao W, Zheng W, Wang J, Zhang X, Gao J, Yang C, Kong D, Xu H, Wang L, Yang Z (2013) Switchable catalytic activity: selenium-containing peptides with redox-controllable self-assembly properties. Angew Chem Int Ed 52:7781–7785

    Article  CAS  Google Scholar 

  • Misawa H, Kobayashi N, Soto-Gutierrez A, Chen Y, Yoshida A, Rivas-Carrillo JD, Navarro-Alvarez N, Tanaka K, Miki A, Takei J, Ueda T, Tanaka M, Endo H, Tanaka N, Ozaki T (2006) PuraMatrix™ facilitates bone regeneration in bone defects of calvaria in mice. Cell Transplant 15:903–910

    Article  PubMed  Google Scholar 

  • Mitra RN, Das D, Roy S, Das PK (2007) Structure and properties of low molecular weight amphiphilic peptide hydrogelators. J Phys Chem B 111(51):14107–14113

    Article  CAS  PubMed  Google Scholar 

  • Mitra RN, Das PK (2008) In situ preparation of gold nanoparticles of varying shape in molecular hydrogel of peptide amphiphiles. J Phys Chem C 112(22):8159–8166

    Article  CAS  Google Scholar 

  • Mondal JH, Ahmed S, Ghosh T, Das D (2015) Reversible deformation–formation of a multistimuli responsive vesicle by a supramolecular peptide amphiphile. Soft Matter 11(24):4912–4920

    Article  CAS  PubMed  Google Scholar 

  • Nandi N, Gayen K, Ghosh S, Bhunia D, Kirkham S, Sen SK, Ghosh S, Hamley IW, Banerjee A (2017) Amphiphilic peptide-based supramolecular, noncytotoxic, stimuli-responsive hydrogels with antibacterial activity. Biomacromolecules 18(11):3621–3629

    Article  CAS  PubMed  Google Scholar 

  • Nguyen MM, Carlini AS, Chien MP, Sonnenberg S, Luo C, Braden RL, Osborn KG, Li Y, Gianneschi NC, Christman KL (2015) Enzyme-responsive nanoparticles for targeted accumulation and prolonged retention in heart tissue after myocardial infarction. Adv Mater 27(37):5547–5552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nothling MD, Xiao Z, Hill NS, Blyth MT, Bhaskaran A, Sani M-A, Espinosa-Gomez A, Ngov K, White J, Buscher T, Separovic F, O’Mara ML, Coote ML, Connal LA (2020) A multifunctional surfactant catalyst inspired by hydrolases. Sci Adv 6(14):eaaz0404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak AP, Breedveld V, Pakstis L, Ozbas B, Pine DJ, Pochan D, Deming TJ (2002) Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417(6887):424–428

    Article  CAS  PubMed  Google Scholar 

  • Nowak AP, Breedveld V, Pine DJ, Deming TJ (2003) Unusual salt stability in highly charged Diblock co-polypeptide hydrogels. J Am Chem Soc 125(50):15666–15670

    Article  CAS  PubMed  Google Scholar 

  • Oh D, Sun J, Nasrolahi Shirazi A, LaPlante KL, Rowley DC, Parang K (2014) Antibacterial activities of amphiphilic cyclic cell-penetrating peptides against multidrug-resistant pathogens. Mol Pharm 11(10):3528–3536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okesola BO, Mendoza-Martinez AK, Cidonio G, Derkus B, Boccorh DK, Osuna de la Peña D, Elsharkawy S, Wu Y, Dawson JI, Wark AW, Knani D, Adams DJ, Oreffo ROC, Mata A (2021) De novo design of functional coassembling organic–inorganic hydrogels for hierarchical mineralization and neovascularization. ACS Nano 15:11202–11217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orbach R, Adler-Abramovich L, Zigerson S, Mironi-Harpaz I, Seliktar D, Gazit E (2009) Self-assembled Fmoc-peptides as a platform for the formation of nanostructures and hydrogels. Biomacromolecules 10(9):2646–2651

    Article  CAS  PubMed  Google Scholar 

  • Pakalns T, Haverstick LK, Fields GB, McCarthy JB, Mooradian LD, Tirrell M (1999) Cellular recognition of synthetic peptide amphiphiles in self-assembled monolayer films. Biomaterials 20(23):2265–2279

    Article  CAS  PubMed  Google Scholar 

  • Pal S, Goswami S, Das D (2021) Cross β amyloid assemblies as complex catalytic machinery. Chem Commun 57(62):7597–7609

    Article  CAS  Google Scholar 

  • Panja S, Adams DJ (2019) Gel to gel transitions by dynamic self-assembly. Chem Commun 55(68):10154–10157

    Article  CAS  Google Scholar 

  • Patravale V, Dandekar P, Jain R (2012) 4 - nanotoxicology: evaluating toxicity potential of drug-nanoparticles. In: Patravale V, Dandekar P, Jain R (eds) Nanoparticulate drug delivery. Woodhead Publishing, pp 123–155

    Chapter  Google Scholar 

  • Pavan M, Worth AP (2008) Review of estimation models for biodegradation. QSAR Comb Sci 27(1):32–40

    Article  CAS  Google Scholar 

  • Pollard TD, Earnshaw WC, Lippincott-Schwartz J, Johnson GT (2017) Chapter 4 - biophysical principles. Cell biology (third edition). Elsevier, pp 53–62

    Google Scholar 

  • Pramanik B, Ahmed S, Singha N, Das BK, Dowari P, Das D (2019a) Unorthodox combination of cation−π and charge-transfer interactions within a donor–acceptor pair. Langmuir 35(2):478–488

    Article  CAS  PubMed  Google Scholar 

  • Pramanik B, Das D (2018) Aggregation-induced emission or hydrolysis by water? The case of Schiff bases in aqueous organic solvents. J Phys Chem C 122(6):3655–3661

    Article  CAS  Google Scholar 

  • Pramanik B, Singha N, Das D (2019b) Sol-, gel-, and paper-based detection of picric acid at femtogram level by a short peptide Gelator. ACS Appl Polym Mater 1(4):833–843

    Article  CAS  Google Scholar 

  • Provot S, Schipani E, Wu J, Kronenberg H (2021) Chapter 3 - development of the skeleton. In: Dempster DW, Cauley JA, Bouxsein ML, Cosman F (eds) Marcus and Feldman's osteoporosis (fifth edition). Academic Press, pp 39–73

    Google Scholar 

  • Qi R, Zhang N, Zhang P, Zhao H, Liu J, Cui J, Xiang J, Han Y, Wang S, Wang Y (2020) Gemini peptide amphiphiles with broad-spectrum antimicrobial activity and potent antibiofilm capacity. ACS Appl Mater Interfaces 12(15):17220–17229

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Das AK, Banerjee A (2007) pH-responsive, bolaamphiphile-based smart metallo-hydrogels as potential dye-adsorbing agents, water purifier, and vitamin B12 carrier. Chem Mater 19(7):1633–1639

    Article  CAS  Google Scholar 

  • Rehm TH, Schmuck C (2010) Ion-pair induced self-assembly in aqueous solvents. Chem Soc Rev 39(10):3597–3611

    Article  CAS  PubMed  Google Scholar 

  • Reja A, Afrose SP, Das D (2020) Aldolase cascade facilitated by self-assembled nanotubes from short peptide amphiphiles. Angew Chem Int Ed 59(11):4329–4334

    Article  CAS  Google Scholar 

  • Ren C, Xu C, Li D, Ren H, Hao J, Yang Z (2014) Gemcitabine induced supramolecular hydrogelations of aldehyde-containing short peptides. RSC Adv 4:34729–34732

    Article  CAS  Google Scholar 

  • Rosa E, Diaferia C, Gallo E, Morelli G, Accardo A (2020) Stable formulations of peptide-based nanogels. Molecules 25(15):3455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rughani RV, Salick DA, Lamm MS, Yucel T, Pochan DJ, Schneider JP (2009) Folding, self-assembly, and bulk material properties of a de novo designed three-stranded β-sheet hydrogel. Biomacromolecules 10(5):1295–1304

    Article  CAS  PubMed  Google Scholar 

  • Salick DA, Kretsinger JK, Pochan DJ, Schneider JP (2007) Inherent antibacterial activity of a peptide-based β-hairpin hydrogel. J Am Chem Soc 129(47):14793–14799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salick DA, Pochan DJ, Schneider JP (2009) Design of an Injectable β-hairpin peptide hydrogel that kills methicillin-resistant Staphylococcus aureus. Adv Mater 21(41):4120–4123

    Article  CAS  Google Scholar 

  • Sarkar T, Chetia M, Chatterjee S (2021) Antimicrobial peptides and proteins: from nature’s reservoir to the laboratory and beyond. Front Chem 9:432

    Article  Google Scholar 

  • Schneider JP, Pochan DJ, Ozbas B, Rajagopal K, Pakstis L, Kretsinger J (2002) Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J Am Chem Soc 124(50):15030–15037

    Article  CAS  PubMed  Google Scholar 

  • Senturk B, Demircan BM, Ozkan AD, Tohumeken S, Delibasi T, Guler MO, Tekinay AB (2017) Diabetic wound regeneration using heparin-mimetic peptide amphiphile gel in db/db mice. Biomater Sci 5(7):1293–1303

    Article  CAS  PubMed  Google Scholar 

  • Shao H, Parquette JR (2010) A π-conjugated hydrogel based on an Fmoc-dipeptide naphthalene diimide semiconductor. Chem Commun 46(24):4285–4287

    Article  CAS  Google Scholar 

  • Shin Y-GK, Newton MD, Isied SS (2003) Distance dependence of electron transfer across peptides with different secondary structures: the role of peptide energetics and electronic coupling. J Am Chem Soc 125(13):3722–3732

    Article  CAS  PubMed  Google Scholar 

  • Shy AN, Kim BJ, Xu B (2019) Enzymatic noncovalent synthesis of supramolecular soft matter for biomedical applications. Matter 1(5):1127–1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Singha N, Das BK, Pramanik B, Das S, Das D (2019a) Freeze the dynamicity: charge transfer complexation assisted control over the reaction pathway. Chem Sci 10(43):10035–10039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singha N, Gupta P, Pramanik B, Ahmed S, Dasgupta A, Ukil A, Das D (2017) Hydrogelation of a naphthalene Diimide appended peptide amphiphile and its application in cell imaging and intracellular pH sensing. Biomacromolecules 18(11):3630–3641

    Article  CAS  PubMed  Google Scholar 

  • Singha N, Neogi S, Pramanik B, Das S, Dasgupta A, Ghosh R, Das D (2019b) Ultrafast, highly sensitive, and selective detection of p-xylene at room temperature by peptide-hydrogel-based composite material. ACS Appl Polym Mater 1(9):2267–2272

    Article  CAS  Google Scholar 

  • Singha N, Srivastava A, Pramanik B, Ahmed S, Dowari P, Chowdhuri S, Das BK, Debnath A, Das D (2019c) Unusual confinement properties of a water insoluble small peptide hydrogel. Chem Sci 10(23):5920–5928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AM, Williams RJ, Tang C, Coppo P, Collins RF, Turner ML, Saiani A, Ulijn RV (2008) Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on π–π interlocked β-sheets. Adv Mater 20(1):37–41

    Article  CAS  Google Scholar 

  • Sone ED, Stupp SI (2011) Bioinspired magnetite mineralization of peptide−amphiphile nanofibers. Chem Matter 23(8):2005–2007

    Article  CAS  Google Scholar 

  • Soukasene S, Toft DJ, Moyer TJ, Lu H, Lee H-K, Standley SM, Cryns VL, Stupp SI (2011) Antitumor activity of peptide amphiphile nanofiber-encapsulated camptothecin. ACS Nano 5(11):9113–9121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutton S, Campbell NL, Cooper AI, Kirkland M, Frith WJ, Adams DJ (2009) Controlled release from modified amino acid hydrogels governed by molecular size or network dynamics. Langmuir 25(17):10285–10291

    Article  CAS  PubMed  Google Scholar 

  • Tantakitti F, Boekhoven J, Wang X, Kazantsev RV, Yu T, Li J, Zhuang E, Zandi R, Ortony JH, Newcomb CJ, Palmer LC, Shekhawat GS, de la Cruz MO, Schatz GC, Stupp SI (2016) Energy landscapes and functions of supramolecular systems. Nat Mater 15(4):469–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao K, Makam P, Aizen R, Gazit E (2017) Self-assembling peptide semiconductors. Science 358(6365):eaam9756

    Article  PubMed  PubMed Central  Google Scholar 

  • Thornton K, Abul-Haija YM, Hodson N, Ulijn RV (2013) Mechanistic insights into phosphatase triggered self-assembly including enhancement of biocatalytic conversion rate. Soft Matter 9(39):9430–9439

    Article  CAS  Google Scholar 

  • Toksoz S, Acar H, Guler MO (2010) Self-assembled one-dimensional soft nanostructures. Soft Matter 6(23):5839–5849

    Article  CAS  Google Scholar 

  • Veiga AS, Sinthuvanich C, Gaspar D, Franquelim HG, Castanho MARB, Schneider JP (2012) Arginine-rich self-assembling peptides as potent antibacterial gels. Biomaterials 33(35):8907–8916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velichko YS, Stupp SI, de la Cruz MO (2008) Molecular simulation study of peptide amphiphile self-assembly. J Phys Chem B 112(8):2326–2334

    Article  CAS  PubMed  Google Scholar 

  • Versluis F, Tomatsu I, Kehr S, Fregonese C, Tepper AWJW, Stuart MCA, Ravoo BJ, Koning RI, Kros A (2009) Shape and release control of a peptide decorated vesicle through pH sensitive orthogonal supramolecular interactions. J Am Chem Soc 131(37):13186–13187

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Guo Y, Wang Z, Zhang X (2010) Superamphiphiles based on charge transfer complex: controllable hierarchical self-assembly of nanoribbons. Langmuir 26(18):14509–14511

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Yang Z, Adams DJ (2012) Controlling peptidebased hydrogelation. Mater Today 15(11):500–507

    Article  CAS  Google Scholar 

  • Wang J, Liu K, Xing R, Yan X (2016a) Peptide self-assembly: thermodynamics and kinetics. Chem Soc Rev 45(20):5589–5604

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Lv Y, Liu X, Qi W, Su R, He Z (2016b) Enhancing the activity of peptide-based artificial hydrolase with catalytic ser/his/asp triad and molecular imprinting. ACS Appl Mater Interfaces 8(22):14133–14141

    Article  CAS  PubMed  Google Scholar 

  • Weiner SL, Heinz A (1989) On biomineralization. Oxford University Press, Oxford

    Google Scholar 

  • Xu H, Wang J, Han S, Wang J, Yu D, Zhang H, Xia D, Zhao X, Waigh TA, Lu JR (2009) Hydrophobic-region-induced transitions in self-assembled peptide nanostructures. Langmuir 25(7):4115–4123

    Article  CAS  PubMed  Google Scholar 

  • Yamada N, Ariga K, Naito M, Matsubara K, Koyama E (1998) Regulation of β-sheet structures within amyloid-like β-sheet assemblage from tripeptide derivatives. J Am Chem Soc 120(47):12192–12199

    Article  CAS  Google Scholar 

  • Yan C, Pochan DJ (2010) Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem Soc Rev 39(9):3528–3540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Schaeffer G, Mattia E, Markovitch O, Liu K, Hussain AS, Ottelé J, Sood A, Otto S (2021) Chemical fueling enables molecular complexification of self-replicators. Angew Chem Int Ed 60(20):11344–11349

    Article  CAS  Google Scholar 

  • Yang Z, Liang G, Ma M, Gao Y, Xu B (2007) Conjugates of naphthalene and dipeptides produce molecular hydrogelators with high efficiency of hydrogelation and superhelical nanofibers. J Mater Chem 17(9):850–854

    Article  CAS  Google Scholar 

  • Yang Z, Liang G, Wang L, Xu B (2006) Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo. J Am Chem Soc 128(9):3038–3043

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Xu B (2004) A simple visual assay based on small molecule hydrogels for detecting inhibitors of enzymes. Chem Commun 21:2424–2425

    Article  Google Scholar 

  • Yang Z, Xu H, Zhao X (2020) Designer self-assembling peptide hydrogels to engineer 3D cell microenvironments for cell constructs formation and precise oncology remodeling in ovarian cancer. Adv Sci 7:1903718

    Article  CAS  Google Scholar 

  • Yokoi H, Kinoshita T, Zhang S (2005) Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc Natl Acad Sci 102(24):8414–8419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y-C, Berndt P, Tirrell M, Fields GB (1996) Self-assembling amphiphiles for construction of protein molecular architecture. J Am Chem Soc 118(50):12515–12520

    Article  CAS  Google Scholar 

  • Yuwono VM, Hartgerink JD (2007) Peptide amphiphile nanofibers template and catalyze silica nanotube formation. Langmuir 23(9):5033–5038

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, He X, Han A, Tu Q, Fang G, Liu J, Wang S, Li H (2016) Artificial hydrolase based on carbon nanotubes conjugated with peptides. Nanoscale 8(38):16851–16856

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Altman M (1999) Peptide self-assembly in functional polymer science and engineering. React Funct Polym 41(1):91–102

    Article  CAS  Google Scholar 

  • Zhang S, Holmes T, Lockshin C, Rich A (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A 90(8):3334–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Yu L, Ji T, Wang C (2020a) Tumor microenvironment–responsive peptide-based supramolecular drug delivery system. Front Chem 8:549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Wang C (2011) Supramolecular amphiphiles. Chem Soc Rev 40(1):94–101

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-L, Chang R, Duan H-Z, Chen Y-X (2020b) Metal ion and light sequentially induced sol–gel–sol transition of a responsive peptide-hydrogel. Soft Matter 16(33):7652–7658

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Chen H, Wang F, Zhang X (2021) Amphiphilic self-assembly peptides: rational strategies to design and delivery for drugs in biomedical applications. Colloids Surf B: Biointerfaces:112040

    Google Scholar 

  • Zhao Y, Yokoi H, Tanaka M, Kinoshita T, Tan T (2008) Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide. Biomacromolecules 9:1511–1518

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 8:607–626

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu P, Yan X, Su Y, Yang Y, Li J (2010) Solvent-induced structural transition of self-assembled dipeptide: from Organogels to microcrystals. Chem Eur J 16(10):3176–3183

    Article  CAS  PubMed  Google Scholar 

  • Zou P, Chen W-T, Sun T, Gao Y, Li L-L, Wang H (2020) Recent advances: peptides and self-assembled peptide-nanosystems for antimicrobial therapy and diagnosis. Biomater Sci 8(18):4975–4996

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

PD thanks PMRF for doctoral fellowship. DD acknowledges SERB, India (CRG 2020/002030) and BRNS, India (58/14/05/2022) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debapratim Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, P., Das, D. (2023). Peptide Amphiphile Nanomaterials. In: Elsawy, M.A. (eds) Peptide Bionanomaterials. Springer, Cham. https://doi.org/10.1007/978-3-031-29360-3_5

Download citation

Publish with us

Policies and ethics