Skip to main content

α-Helix and Coiled-Coil Peptide Nanomaterials

  • 180 Accesses

Abstract

Good synthetic access to peptide materials with controllable morphology holds great promise for medical applications, but also for the development of biomimetic devices. α-Helical peptides can be designed to self-assemble into biomimetic materials with highly diverse morphologies and that with precise control at the molecular level. Most α-helical peptide material designs to date have been derived from the α-helical coiled coil, as the sequence-structure relationships are well understood and designs for most of the described coiled-coil assemblies are readily available. In general, α-helical peptide materials can be fibrous, tubular, or cage-like, or can assemble into geometric figures or highly ordered crystalline arrays. This chapter provides a comprehensive overview of research activities on materials constructed from α-helical peptides. In addition to coiled-coil materials, which account for the majority of reported designs, peptide materials made from other α-helical building blocks are also included. We discuss the design strategies that have been used to produce the various forms of materials and briefly outline intended applications where applicable.

Keywords

  • Coiled coil
  • α-Helical peptide fibers
  • α-Helical peptide nanotubes
  • α-Helical peptide cages
  • α-Helical peptide networks and crystals

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anzini P, Xu C, Hughes S, Magnotti E, Jiang T, Hemmingsen L, Demeler B, Conticello VP (2013) Controlling self-assembly of a peptide-based material via metal-ion induced registry shift. J Am Chem Soc 135:10278–10281

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Aupič J, Strmšek Ž, Lapenta F, Pahovnik D, Pisanski T, Drobnak I, Ljubetič A, Jerala R (2021) Designed folding pathway of modular coiled-coil-based proteins. Nat Commun 12:1–12

    CrossRef  Google Scholar 

  • Badieyan S, Sciore A, Eschweiler JD, Koldewey P, Cristie-David AS, Ruotolo BT, Bardwell JCA, Su M, Marsh ENG (2017) Symmetry-directed self-assembly of a tetrahedral protein cage mediated by de novo-designed coiled coils. Chembiochem 18:1888–1892

    CrossRef  CAS  PubMed  Google Scholar 

  • Banwell EF, Abelardo ES, Adams DJ, Birchall MA, Corrigan A, Donald AM, Kirkland M, Serpell LC, Butler MF, Woolfson DN (2009) Rational design and application of responsive α-helical peptide hydrogels. Nat Mater 8:596–600

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Beesley JL, Baum HE, Hodgson LR, Verkade P, Banting GS, Woolfson DN (2018) Modifying self-assembled peptide cages to control internalization into mammalian cells. Nano Lett 18:5933–5937

    CrossRef  CAS  PubMed  Google Scholar 

  • Beesley JL, Woolfson DN (2019) The de novo design of α-helical peptides for supramolecular self-assembly. Curr Opin Biotechnol 58:175–182

    CrossRef  CAS  PubMed  Google Scholar 

  • Bella A, Shaw M, Ray S, Ryadnov MG (2014) Filming protein fibrillogenesis in real time. Sci Rep 4:1–6

    CrossRef  Google Scholar 

  • Bera S, Mondal S, Xue B, Shimon LJW, Cao Y, Gazit E (2019) Rigid helical-like assemblies from a self-aggregating tripeptideNat Mater 18:503–509

    CrossRef  CAS  PubMed  Google Scholar 

  • Betz SF, DeGrado WF (1996) Controlling topology and native-like behavior of de novo-designed peptides: design and characterization of antiparallel four-stranded coiled coils. Biochemistry 35:6955–6962

    CrossRef  CAS  PubMed  Google Scholar 

  • Božič Abram S, Gradišar H, Aupič J, Round AR, Jerala R (2021) Triangular in vivo self-assembling coiled-coil protein origami. ACS Chem Biol 16:310–315

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Bromley EHC, Sessions RB, Thomson AR, Woolfson DN (2009) Designed α-helical tectons for constructing multicomponent synthetic biological systems. J Am Chem Soc 131:928–930

    CrossRef  CAS  PubMed  Google Scholar 

  • Burgess NC, Sharp TH, Thomas F, Wood CW, Thomson AR, Zaccai NR, Brady RL, Serpell LC, Woolfson DN (2015) Modular design of self-assembling peptide-based nanotubes. J Am Chem Soc 137:10554–10562

    CrossRef  CAS  PubMed  Google Scholar 

  • Burton AJ, Thomas F, Agnew C, Hudson KL, Halford SE, Brady RL, Woolfson DN (2013) Accessibility, reactivity, and selectivity of side chains within a channel of de novo peptide assembly. J Am Chem Soc 135:12524–12527

    CrossRef  CAS  PubMed  Google Scholar 

  • Cannon KA, Park RU, Boyken SE, Nattermann U, Yi S, Baker D, King NP, Yeates TO (2020) Design and structure of two new protein cages illustrate successes and ongoing challenges in protein engineering. Protein Sci 29:919–929

    CrossRef  CAS  PubMed  Google Scholar 

  • Castelletto V, Seitsonen J, Ruokolainen J, Hamley IW (2021) Alpha helical surfactant-like peptides self-assemble into pH-dependent nanostructures. Soft Matter 17:3096–3104

    CrossRef  CAS  PubMed  Google Scholar 

  • Castelletto V, Seitsonen J, Ruokolainen J, Piras C, Cramer R, Edwards-Gayle CJC, Hamley IW (2020) Peptide nanotubes self-assembled from leucine-rich alpha helical surfactant-like peptides. Chem Commun 56:11977–11980

    CrossRef  CAS  Google Scholar 

  • Cera L, Gonzalez GM, Liu Q, Choi S, Chantre CO, Lee J, Gabardi R, Choi MC, Shin K, Parker KK (2021) A bioinspired and hierarchically structured shape-memory material. Nat Mater 20:242–249

    CrossRef  CAS  PubMed  Google Scholar 

  • Conticello V, Hughes S, Modlin C (2017) Biomaterials made from coiled-coil peptides. In: Parry DAD, Squire JM (eds) Fibrous proteins: structures and mechanisms. Springer International Publishing, Cham, pp 575–600

    CrossRef  Google Scholar 

  • Crick FHC (1953) The packing of alpha-helices - simple coiled-coils. Acta Crystallogr 6:689–697

    CrossRef  CAS  Google Scholar 

  • Cristie-David AS, Chen J, Nowak DB, Bondy AL, Sun K, Park SI, Banaszak Holl MM, Su M, Marsh ENG (2019) Coiled-coil-mediated assembly of an icosahedral protein cage with extremely high thermal and chemical stability. J Am Chem Soc 141:9207–9216

    CrossRef  CAS  PubMed  Google Scholar 

  • Cristie-David AS, Koldewey P, Meinen BA, Bardwell JCA, Marsh ENG (2018) Elaborating a coiled-coil-assembled octahedral protein cage with additional protein domains. Protein Sci 27:1893–1900

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson WM, Martin FJO, Rhys GG, Shelley KL, Brady RL, Woolfson DN (2021) Coiled coils 9-to-5: rational: de novo design of α-helical barrels with tunable oligomeric states. Chem Sci 12:6923–6928

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • De Santis E, Castelletto V, Ryadnov MG (2015) Interfacial zippering-up of coiled-coil protein filaments. Phys Chem Chem Phys 17:31055–31060

    CrossRef  Google Scholar 

  • De Santis E, Faruqui N, Noble JE, Ryadnov MG (2014) Exploitable length correlations in peptide nanofibres. Nanoscale 6:11425–11430

    CrossRef  PubMed  Google Scholar 

  • Djinović-Carugo K, Young P, Gautel M, Saraste M (1999) Structure of the α-actinin rod: molecular basis for cross-linking of actin filaments. Cell 98:537–546

    CrossRef  PubMed  Google Scholar 

  • Dong H, Paramonov SE, Hartgerink JD (2008) Self-assembly of α-helical coiled coil nanofibers. J Am Chem Soc 130:13691–13695

    CrossRef  CAS  PubMed  Google Scholar 

  • Egelman EH, Xu C, DiMaio F, Magnotti E, Modlin C, Yu X, Wright E, Baker D, Conticello VP (2015) Structural plasticity of helical nanotubes based on coiled-coil assemblies. Structure 23:280–289

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Faruqui N, Bella A, Ravi J, Ray S, Lamarre B, Ryadnov MG (2014) Differentially instructive extracellular protein micro-nets. J Am Chem Soc 136:7889–7898

    CrossRef  CAS  PubMed  Google Scholar 

  • Fletcher JM, Bartlett GJ, Boyle AL, Danon JJ, Rush LE, Lupas AN, Woolfson DN (2017) N@a and N@d: oligomer and partner specification by asparagine in coiled-coil interfaces. ACS Chem Biol 12:528–538

    CrossRef  CAS  PubMed  Google Scholar 

  • Fletcher JM, Boyle AL, Bruning M, Bartlett GJ, Vincent TL, Zaccai NR, Armstrong CT, Bromley EHC, Booth PJ, Brady RL, Thomson AR, Woolfson DN (2012) A basis set of de novo coiled-coil peptide oligomers for rational protein design and synthetic biology. ACS Synth Biol 1:240–250

    CrossRef  CAS  PubMed  Google Scholar 

  • Fletcher JM, Harniman RL, Barnes FRH, Boyle AL, Collins A, Mantell J, Sharp TH, Antognozzi M, Booth PJ, Linden N, Miles MJ, Sessions RB, Verkade P, Woolfson DN (2013) Self-assembling cages from coiled-coil peptide modules. Science 80(340):595–599

    CrossRef  Google Scholar 

  • Fraser RDB, Macrae TP, Rogers GE (1962) Molecular organization in alpha-keratin. Nature 193:1052–1055

    CrossRef  CAS  PubMed  Google Scholar 

  • Fu J, Guerette PA, Miserez A (2015) Self-assembly of recombinant hagfish thread keratins amenable to a strain-induced α-helix to β-sheet transition. Biomacromolecules 16:2327–2339

    CrossRef  CAS  PubMed  Google Scholar 

  • Galloway JM, Bray HEV, Shoemark DK, Hodgson LR, Coombs J, Mantell JM, Rose RS, Ross JF, Morris C, Harniman RL, Wood CW, Arthur C, Verkade P, Woolfson DN (2021) De novo designed peptide and protein hairpins self-assemble into sheets and nanoparticles. Small 17:1–11

    CrossRef  Google Scholar 

  • Ghosh TS, Chaitanya SK, Sankararamakrishnan R (2009) End-to-end and end-to-middle interhelical interactions: new classes of interacting helix pairs in protein structures. Acta Crystallogr Sect D Biol Crystallogr 65:1032–1041

    CrossRef  CAS  Google Scholar 

  • Gifford JL, Walsh MP, Vogel HJ (2007) Structures and metal-ion-binding properties of the Ca2+−binding helix–loop–helix EF-hand motifs. Biochem J 405:199–221

    CrossRef  CAS  PubMed  Google Scholar 

  • Gradišar H, Božič S, Doles T, Vengust D, Hafner-Bratkovič I, Mertelj A, Webb B, Šali A, Klavžar S, Jerala R (2013) Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments. Nat Chem Biol 9:362–366

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Groth MC, Rink WM, Meyer NF, Thomas F (2018) Kinetic studies on strand displacement in de novo designed parallel heterodimeric coiled coils. Chem Sci 9:4308–4316

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunasekar SK, Asnani M, Limbad C, Haghpanah JS, Hom W, Barra H, Nanda S, Lu M, Montclare JK (2009) N-terminal aliphatic residues dictate the structure, stability, assembly, and small molecule binding of the coiled-coil region of cartilage oligomeric matrix protein. Biochemistry 48:8559–8567

    CrossRef  CAS  PubMed  Google Scholar 

  • Hadley EB, Testa OD, Woolfson DN, Gellman SH (2008) Preferred side-chain constellations at antiparallel coiled-coil interfaces. Proc Natl Acad Sci 105:530–535

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Harbury P, Zhang T, Kim P, Alber T (1993) A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 80(262):1401–1407

    CrossRef  Google Scholar 

  • Hill LK, Meleties M, Katyal P, Xie X, Delgado-Fukushima E, Jihad T, Liu CF, O’Neill S, Tu RS, Renfrew PD, Bonneau R, Wadghiri YZ, Montclare JK (2019) Thermoresponsive protein-engineered coiled-coil hydrogel for sustained small molecule release. Biomacromolecules 20:3340–3351

    CrossRef  CAS  PubMed  Google Scholar 

  • Hsia Y, Bale JB, Gonen S, Shi D, Sheffler W, Fong KK, Nattermann U, Xu C, Huang PS, Ravichandran R, Yi S, Davis TN, Gonen T, King NP, Baker D (2016) Design of a hyperstable 60-subunit protein icosahedron. Nature 535:136–139

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes SA, Wang F, Wang S, Kreutzberger MAB, Osinski T, Orlova A, Wall JS, Zuo X, Egelman EH, Conticello VP (2019) Ambidextrous helical nanotubes from self-assembly of designed helical hairpin motifs. Proc Natl Acad Sci 116:14456–14464

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hume J, Sun J, Jacquet R, Renfrew PD, Martin JA, Bonneau R, Gilchrist ML, Montclare JK (2014) Engineered coiled-coil protein microfibers. Biomacromolecules 15:3503–3510

    CrossRef  CAS  PubMed  Google Scholar 

  • Ing NL, Spencer RK, Luong SH, Nguyen HD, Hochbaum AI (2018) Electronic conductivity in biomimetic α-helical peptide nanofibers and gels. ACS Nano 12:2652–2661

    CrossRef  CAS  PubMed  Google Scholar 

  • Kim K, Kloxin CJ, Saven JG, Pochan DJ (2021) Nanofibers produced by electrospinning of Ultrarigid polymer rods made from designed peptide bundlemers. ACS Appl Mater Interfaces

    Google Scholar 

  • Kojima S, Kuriki Y, Yoshida T, Yazaki K, Miura K (1997) Fibril formation by an amphipathic alpha-helix-forming polypeptide produced by gene engineering. Proc Jpn Acad Ser B 73:7–11

    CrossRef  Google Scholar 

  • Lanci CJ, MacDermaid CM, Kang SG, Acharya R, North B, Yang X, Qiu XJ, DeGrado WF, Saven JG (2012) Computational design of a protein crystal. Proc Natl Acad Sci U S A 109:7304–7309

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Laniado J, Cannon KA, Miller JE, Sawaya MR, McNamara DE, Yeates TO (2021) Geometric lessons and design strategies for nanoscale protein cages. ACS Nano 15:4277–4286

    CrossRef  CAS  PubMed  Google Scholar 

  • Lapenta F, Aupič J, Strmšek Ž, Jerala R (2018) Coiled coil protein origami: from modular design principles towards biotechnological applications. Chem Soc Rev 47:3530–3542

    CrossRef  CAS  PubMed  Google Scholar 

  • Lapenta F, Aupič J, Vezzoli M, Strmšek Ž, Da Vela S, Svergun DI, Carazo JM, Melero R, Jerala R (2021) Self-assembly and regulation of protein cages from pre-organised coiled-coil modules. Nat Commun 12:1–12

    Google Scholar 

  • Lavigne P, Kay CM, Sönnichsen FD, Hodges RS, Lumb KJ, Kim PS (1996) Interhelical salt bridges, coiled-coil stability, and specificity of dimerization. Science 271:1136–1138

    CrossRef  CAS  PubMed  Google Scholar 

  • Lin Y, An B, Bagheri M, Wang Q, Harden JL, Kaplan DL (2017) Electrochemically directed assembly of designer coiled-coil telechelic proteins. ACS Biomater Sci Eng 3:3195–3206

    CrossRef  CAS  PubMed  Google Scholar 

  • Litowski JR, Hodges RS (2002) Designing heterodimeric two-stranded α-helical coiled-coils. J Biol Chem 277:37272–37279

    CrossRef  CAS  PubMed  Google Scholar 

  • Liu J, Zheng Q, Deng Y, Cheng C-S, Kallenbach NR, Lu M (2006) A seven-helix coiled coil. Proc Natl Acad Sci 103:15457–15462

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ljubetič A, Lapenta F, Gradišar H, Drobnak I, Aupič J, Strmšek Ž, Lainšček D, Hafner-Bratkovič I, Majerle A, Krivec N, Benčina M, Pisanski T, Veličković TĆ, Round A, Carazo JM, Melero R, Jerala R (2017) Design of coiled-coil protein-origami cages that self-assemble in vitro and in vivo. Nat Biotechnol 35:1094–1101

    CrossRef  PubMed  Google Scholar 

  • Lombardi A, Bryson JW, DeGrado WF (1996) De novo design of heterotrimeric coiled coils. Biopolymers 40:495–504

    CrossRef  CAS  PubMed  Google Scholar 

  • Lumb K, Kim P (1995) Measurement of interhelical electrostatic interactions in the GCN4 leucine zipper. Science 268:436–439

    CrossRef  CAS  PubMed  Google Scholar 

  • Lumb KJ, Kim PS (1996) Response: how much solar radiation do clouds absorb? Science 271:1137–1138

    CrossRef  CAS  PubMed  Google Scholar 

  • Lupas AN, Bassler J, Dunin-Horkawicz S (2017) The structure and topology of $α$-helical coiled coils. In: Parry DAD, Squire JM (eds) Fibrous proteins: structures and mechanisms. Springer International Publishing, Cham, pp 95–129

    CrossRef  Google Scholar 

  • Lupas AN, Gruber M (2005) The structure of α-helical coiled coils. Adv Protein Chem 70:37–38

    CrossRef  CAS  PubMed  Google Scholar 

  • Majerle A, Hadzi S, Aupič J, Satler T, Lapenta F, Strmšek Ž, Lah J, Loris R, Jerala R (2021) A nanobody toolbox targeting dimeric coiled-coil modules for functionalization of designed protein origami structures. Proc Natl Acad Sci U S A 118

    Google Scholar 

  • McClain DL, Woods HL, Oakley MG (2001) Design and characterization of a heterodimeric coiled coil that forms exclusively with an antiparallel relative helix orientation. J Am Chem Soc 123:3151–3152

    CrossRef  CAS  PubMed  Google Scholar 

  • Mehrban N, Abelardo E, Wasmuth A, Hudson KL, Mullen LM, Thomson AR, Birchall MA, Woolfson DN (2014) Assessing cellular response to functionalized α-helical peptide hydrogels. Adv Healthc Mater 3:1387–1391

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehrban N, Zhu B, Tamagnini F, Young FI, Wasmuth A, Hudson KL, Thomson AR, Birchall MA, Randall AD, Song B, Woolfson DN (2015) Functionalized α-helical peptide hydrogels for neural tissue engineering. ACS Biomater Sci Eng 1:431–439

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Meleties M, Katyal P, Lin B, Britton D, Montclare JK (2021) Self-assembly of stimuli-responsive coiled-coil fibrous hydrogels. Soft Matter (26)

    Google Scholar 

  • Miyamoto T, Hayashi Y, Yoshida K, Watanabe H, Uchihashi T, Yonezawa K, Shimizu N, Kamikubo H, Hirota S (2019) Construction of a quadrangular tetramer and a cage-like hexamer from three-helix bundle-linked fusion proteins. ACS Synth Biol 8:1112–1120

    CrossRef  CAS  PubMed  Google Scholar 

  • Mondal S, Gazit E (2016) The self-assembly of helical peptide building blocks. ChemNanoMat 2:323–332

    CrossRef  CAS  Google Scholar 

  • Morris C, Glennie SJ, Lam HS, Baum HE, Kandage D, Williams NA, Morgan DJ, Woolfson DN, Davidson AD (2019) A modular vaccine platform combining self-assembled peptide cages and immunogenic peptides. Adv Funct Mater 29:1–12

    CrossRef  Google Scholar 

  • Nautiyal S, Woolfson DN, King DS, Alber T (1995) A designed heterotrimeric coiled coil. Biochemistry 34:11645–11651

    CrossRef  CAS  PubMed  Google Scholar 

  • Negron C, Keating AE (2014) A set of computationally designed orthogonal antiparallel homodimers that expands the synthetic coiled-coil toolkit. J Am Chem Soc 136:16544–16556

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Nepal M, Sheedlo MJ, Das C, Chmielewski J (2016) Accessing three-dimensional crystals with incorporated guests through metal-directed coiled-coil peptide assembly. J Am Chem Soc 138:11051–11057

    CrossRef  CAS  PubMed  Google Scholar 

  • Noble JE, De Santis E, Ravi J, Lamarre B, Castelletto V, Mantell J, Ray S, Ryadnov MG (2016) A de novo virus-like topology for synthetic virions. J Am Chem Soc 138:12202–12210

    CrossRef  CAS  PubMed  Google Scholar 

  • Oakley MG, Hollenbeck JJ (2001) The design of antiparallel coiled coils. Curr Opin Struct Biol 11:450–457

    CrossRef  CAS  PubMed  Google Scholar 

  • Oakley MG, Kim PS (1998) A buried polar interaction can direct the relative orientation of helices in a coiled coil. Biochemistry 37:12603–12610

    CrossRef  CAS  PubMed  Google Scholar 

  • Ogihara NL, Weiss MS, Degrado WF, Eisenberg D (1997) The crystal structure of the designed trimeric coiled coil coil-VaLd: implications for engineering crystals and supramolecular assemblies. Protein Sci 6:80–88

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Oshaben KM, Horne WS (2014) Tuning assembly size in peptide-based supramolecular polymers by modulation of subunit association affinity. Biomacromolecules 15:1436–1442

    CrossRef  CAS  PubMed  Google Scholar 

  • Padilla JE, Colovos C, Yeates TO (2001) Nanohedra: using symmetry to design self assembling protein cages, layers, crystals, and filaments. Proc Natl Acad Sci U S A 98:2217–2221

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandya MJ, Spooner GM, Sunde M, Thorpe JR, Rodger A, Woolfson DN (2000) Sticky-end assembly of a designed peptide fiber provides insight into protein fibrillogenesis. Biochemistry 39:8728–8734

    CrossRef  CAS  PubMed  Google Scholar 

  • Papapostolou D, Smith AM, Atkins EDT, Oliver SJ, Ryadnov MG, Serpell LC, Woolfson DN (2007) Engineering nanoscale order into a designed protein fiber. Proc Natl Acad Sci U S A 104:10853–10858

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Park WM (2020) Coiled-coils: the molecular zippers that self-assemble protein nanostructures. Int J Mol Sci 21

    Google Scholar 

  • Park WM, Bedewy M, Berggren KK, Keating AE (2017) Modular assembly of a protein nanotriangle using orthogonally interacting coiled coils. Sci Rep 7:1–10

    PubMed  PubMed Central  Google Scholar 

  • Peters JW, Stowell MHB, Rees DC (1996) A leucine-rich repeat variant with a novel repetitive protein structural motif. Nat Struct Biol 3:991–994

    CrossRef  CAS  PubMed  Google Scholar 

  • Pimentel TAPF, Yan Z, Jeffers SA, Holmes KV, Hodges RS, Burkhard P (2009) Peptide nanoparticles as novel immunogens: design and analysis of a prototypic severe acute respiratory syndrome vaccine. Chem Biol Drug Des 73:53–61

    CrossRef  CAS  PubMed  Google Scholar 

  • Potekhin SA, Melnik TN, Popov V, Lanina NF, Vazina AA, Rigler P, Verdini AS, Corradin G, Kajava AV (2001) De novo design of fibrils made of short α-helical coiled coil peptides. Chem Biol 8:1025–1032

    CrossRef  CAS  PubMed  Google Scholar 

  • Root BC, Pellegrino LD, Crawford ED, Kokona B, Fairman R (2009) Design of a heterotetrameric coiled coil. Protein Sci 18:329–336

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryadnov MG, Woolfson DN (2003) Engineering the morphology of a self-assembling protein fibre. Nat Mater 2:329–332

    CrossRef  CAS  PubMed  Google Scholar 

  • Sasaki E, Böhringer D, Van De Waterbeemd M, Leibundgut M, Zschoche R, Heck AJR, Ban N, Hilvert D (2017) Structure and assembly of scalable porous protein cages. Nat Commun 8:1–10

    CrossRef  Google Scholar 

  • Schnarr NA, Kennan AJ (2004) Strand orientation by steric matching: a designed antiparallel coiled-coil trimer. J Am Chem Soc 126:14447–14451

    CrossRef  CAS  PubMed  Google Scholar 

  • Sciore A, Su M, Koldewey P, Eschweiler JD, Diffley KA, Linhares BM, Ruotolo BT, Bardwell JCA, Skiniotis G, Marsh ENG (2016) Flexible, symmetry-directed approach to assembling protein cages. Proc Natl Acad Sci U S A 113:8681–8686

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp TH, Bruning M, Mantell J, Sessions RB, Thomson AR, Zaccai NR, Brady RL, Verkade P, Woolfson DN (2012) Cryo-transmission electron microscopy structure of a gigadalton peptide fiber of de novo design. Proc Natl Acad Sci U S A 109:13266–13271

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Sinha NJ, Langenstein MG, Pochan DJ, Kloxin CJ, Saven JG (2021) Peptide design and self-assembly into targeted nanostructure and functional materials. Chem Rev 121:13915–13935

    CrossRef  CAS  PubMed  Google Scholar 

  • Spencer RK, Hochbaum AI (2016) X-ray crystallographic structure and solution behavior of an antiparallel coiled-coil hexamer formed by de novo peptides. Biochemistry 55:3214–3223

    CrossRef  CAS  PubMed  Google Scholar 

  • Spencer RK, Hochbaum AI (2017) The Phe-Ile zipper: a specific interaction motif drives antiparallel coiled-coil hexamer formation. Biochemistry 56:5300–5308

    CrossRef  CAS  PubMed  Google Scholar 

  • Staples JK, Oshaben KM, Horne WS (2012) A modular synthetic platform for the construction of protein-based supramolecular polymers via coiled-coil self-assembly. Chem Sci 3:3387–3392

    CrossRef  CAS  Google Scholar 

  • Steinkruger JD, Bartlett GJ, Hadley EB, Fay L, Woolfson DN, Gellman SH (2012) The d ′-- d -- d ′ vertical triad is less discriminating than the a ′-- a -- a ′ vertical triad in the antiparallel coiled-coil dimer motif. J Am Chem Soc 134:2626–2633

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland TD, Young JH, Weisman S, Hayashi CY, Merritt DJ (2010) Insect silk: one name, many materials. Annu Rev Entomol 55:171–188

    CrossRef  CAS  PubMed  Google Scholar 

  • Tavenor NA, Murnin MJ, Horne WS (2017) Supramolecular metal-coordination polymers, nets, and frameworks from synthetic coiled-coil peptides. J Am Chem Soc 139:2212–2215

    CrossRef  CAS  PubMed  Google Scholar 

  • Tayeb-Fligelman E, Tabachnikov O, Moshe A, Goldshmidt-Tran O, Sawaya MR, Coquelle N, Colletier J-P, Landau M (2017) The cytotoxic Staphylococcus aureus PSMα3 reveals a cross-α amyloid-like fibril. Science 355:831–833

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Testa OD, Moutevelis E, Woolfson DN (2009) CC+: a relational database of coiled-coil structures. Nucleic Acids Res 37:D315–D322

    CrossRef  CAS  PubMed  Google Scholar 

  • Thomas F, Boyle AL, Burton AJ, Woolfson DN (2013) A set of de novo designed parallel heterodimeric coiled coils with quantified dissociation constants in the micromolar to sub-nanomolar regime. J Am Chem Soc 135:5161–5166

    CrossRef  CAS  PubMed  Google Scholar 

  • Thomas F, Burgess NC, Thomson AR, Woolfson DN (2016) Controlling the assembly of coiled-coil peptide nanotubes. Angew Chem Int Ed Engl 55:987–991

    CrossRef  CAS  PubMed  Google Scholar 

  • Thomas F, Dawson WM, Lang EJM, Burton AJ, Bartlett GJ, Rhys GG, Mulholland AJ, Woolfson DN (2018) De novo -designed α-helical barrels as receptors for small molecules. ACS Synth Biol 7:1808–1816

    CrossRef  CAS  PubMed  Google Scholar 

  • Thomas F, Niitsu A, Oregioni A, Bartlett GJ, Woolfson DN (2017) Conformational dynamics of asparagine at coiled-coil interfaces. Biochemistry 56:6544–6554

    CrossRef  CAS  PubMed  Google Scholar 

  • Thomson AR, Wood CW, Burton AJ, Bartlett GJ, Sessions RB, Brady RL, Woolfson DN (2014) Computational design of water-soluble α-helical barrels. Science 346:485–488

    CrossRef  CAS  PubMed  Google Scholar 

  • Tunn I, Harrington MJ, Blank KG (2019) Bioinspired histidine-Zn2+ coordination for tuning the mechanical properties of self-healing coiled coil cross-linked hydrogels. Biomimetics 4:25

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Urvoas A, Guellouz A, Valerio-Lepiniec M, Graille M, Durand D, Desravines DC, van Tilbeurgh H, Desmadril M, Minard P (2010) Design, production and molecular structure of a new family of artificial alpha-helicoidal repeat proteins (αRep) based on thermostable HEAT-like repeats. J Mol Biol 404:307–327

    CrossRef  CAS  PubMed  Google Scholar 

  • Utterström J, Naeimipour S, Selegård R, Aili D (2021) Coiled coil-based therapeutics and drug delivery systems. Adv Drug Deliv Rev 170:26–43

    CrossRef  PubMed  Google Scholar 

  • Walshaw J, Woolfson DN (2003) Extended knobs-into-holes packing in classical and complex coiled-coil assemblies. J Struct Biol 144:349–361

    CrossRef  CAS  PubMed  Google Scholar 

  • Wang F, Gnewou O, Modlin C, Beltran LC, Xu C, Su Z, Juneja P, Grigoryan G, Egelman EH, Conticello VP (2021) Structural analysis of cross α-helical nanotubes provides insight into the designability of filamentous peptide nanomaterials. Nat Commun 12:407

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood CW, Bruning M, Ibarra AA, Bartlett GJ, Thomson AR, Sessions RB, Brady RL, Woolfson DN (2014) CCBuilder: an interactive web-based tool for building, designing and assessing coiled-coil protein assemblies. Bioinformatics 30:3029–3035

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolfson DN (2017) Coiled-coil design: updated and upgraded. Subcell Biochem 82:35–61

    CrossRef  CAS  PubMed  Google Scholar 

  • Woolfson DN, Bartlett GJ, Bruning M, Thomson AR (2012) New currency for old rope: from coiled-coil assemblies to α-helical barrels. Curr Opin Struct Biol 22:432–441

    CrossRef  CAS  PubMed  Google Scholar 

  • Wu D, Sinha N, Lee J, Sutherland BP, Halaszynski NI, Tian Y, Caplan J, Zhang HV, Saven JG, Kloxin CJ, Pochan DJ (2019) Polymers with controlled assembly and rigidity made with click-functional peptide bundles. Nature 574:658–662

    CrossRef  CAS  PubMed  Google Scholar 

  • Xu C, Liu R, Mehta AK, Guerrero-Ferreira RC, Wright ER, Dunin-Horkawicz S, Morris K, Serpell LC, Zuo X, Wall JS, Conticello VP (2013) Rational design of helical nanotubes from self-assembly of coiled-coil lock washers. J Am Chem Soc 135:15565–15578

    CrossRef  CAS  PubMed  Google Scholar 

  • Zaccai NR, Chi B, Thomson AR, Boyle AL, Bartlett GJ, Bruning M, Linden N, Sessions RB, Booth PJ, Brady RL, Woolfson DN (2011) A de novo peptide hexamer with a mutable channel. Nat Chem Biol 7:935–941

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimenkov Y, Dublin SN, Ni R, Tu RS, Breedveld V, Apkarian RP, Conticello VP (2006) Rational design of a reversible pH-responsive switch for peptide self-assembly. J Am Chem Soc 128:6770–6771

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, F. (2023). α-Helix and Coiled-Coil Peptide Nanomaterials. In: Elsawy, M.A. (eds) Peptide Bionanomaterials. Springer, Cham. https://doi.org/10.1007/978-3-031-29360-3_3

Download citation