Skip to main content

Cutaneous Adverse Events from Systemic Anticancer Treatments

  • Chapter
  • First Online:
Oncodermatology

Abstract

Dermatologic adverse events became an important issue with the advance of cancer treatment, since they have a high frequency, are often symptomatic, and might cause an important impact on the patient’s quality of life (QoL). Skin toxicities might lead to dose reductions or even discontinuation of cancer therapy, with impact on the disease outcome.

Oncologic treatments might be divided into three main categories, regarding their mechanism of action, with characteristic adverse events: conventional chemotherapy, targeted agents, and immunotherapy.

It is important for dermatologists to know the most common types of reactions to be able to help patients and oncologists on the prevention and management of those toxicities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bensadoun RJ, Humbert P, Krutman J, Luger T, Triller R, Rougier A, Seite S, Dreno B. Daily baseline skin care in the prevention, treatment, and supportive care of skin toxicity in oncology patients: recommendations from a multinational expert panel. Cancer Manag Res. 2013;5:401–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Balagula Y, Rosen ST, Lacouture ME. The emergence of supportive oncodermatology: the study of dermatologic adverse events to cancer therapies. J Am Acad Dermatol. 2011;65(3):624–35.

    Article  PubMed  Google Scholar 

  3. Reyes-Habito CM, Roh EK. Cutaneous reactions to chemotherapeutic drugs and targeted therapies for cancer: Part I. Conventional chemotherapeutic drugs. J Am Acad Dermatol. 2014;71(2):203.e1–203.e12.

    Article  CAS  PubMed  Google Scholar 

  4. Reyes-Habito CM, Roh EK. Cutaneous reactions to chemotherapeutic drugs and targeted therapy for cancer: Part II. Targeted therapy. J Am Acad Dermatol. 2014;71(2):217.e1–217.e11.

    Article  CAS  PubMed  Google Scholar 

  5. Macdonald JB, Macdonald B, Golitz LE, LoRusso P, Sekulic A. Cutaneous adverse effects of targeted therapies: Part I: Inhibitors of the cellular membrane. J Am Acad Dermatol. 2015;72(2):203–18.

    Article  CAS  PubMed  Google Scholar 

  6. Macdonald JB, Macdonald B, Golitz LE, LoRusso P, Sekulic A. Cutaneous adverse effects of targeted therapies: Part II: Inhibitors of intracellular molecular signaling pathways. J Am Acad Dermatol. 2015;72(2):221–36.

    Article  CAS  PubMed  Google Scholar 

  7. Tischer B, Huber R, Kraemer M, Lacouture ME. Dermatologic events from EGFR inhibitors: the issue of the missing patient voice. Support Care Cancer. 2017;25(2):651–60.

    Article  PubMed  Google Scholar 

  8. Gerber DE. Targeted therapies: a new generation of cancer treatments. Am Fam Physician. 2008;77(3):311–9.

    PubMed  Google Scholar 

  9. Lacouture ME, Sibaud V, Anadkat MJ, et al. Dermatologic adverse events associated with selective fibroblast growth factor receptor inhibitors: overview, prevention, and management guidelines. Oncologist. 2021;26:e316–26.

    Article  PubMed  Google Scholar 

  10. Friedman CF, Proverbs-Singh TA, Postow MA. Treatment of the immune-related adverse effects of immune checkpoint inhibitors: a review. JAMA Oncol. 2016;2(10):1346–53.

    Article  PubMed  Google Scholar 

  11. Puzanov I, Diab A, Abdallah K, Bingham CO III, Brogdon C, Dadu R, Hamad L, Kim S, Lacouture ME, LeBoeuf NR, Lenihan D, Onofrei C, Shannon V, Sharma R, Silk AW, Skondra D, Suarez-Almazor ME, Wang Y, Wiley K, Kaufman HL, Ernstoff MS, Society for Immunotherapy of Cancer Toxicity Management Working Group. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J Immunother Cancer. 2017;5(1):95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rapoport BL, van Eeden R, Sibaud V, Epstein JB, Klastersky J, Aapro M, Moodley D. Supportive care for patients undergoing immunotherapy. Support Care Cancer. 2017;25(10):3017–30.

    Article  PubMed  Google Scholar 

  13. Lacouture ME, Wolchok JD, Yosipovitch G, Kähler KC, Busam KJ, Hauschild A. Ipilimumab in patients with cancer and the management of dermatologic adverse events. J Am Acad Dermatol. 2014;71(1):161–9.

    Article  CAS  PubMed  Google Scholar 

  14. Geisler AN, Phillips GS, Barrios DM, et al. Immune checkpoint inhibitor related dermatologic adverse events. J Am Acad Dermatol. 2020;83:1255–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Valentine J, Belum VR, Duran J, Ciccolini K, Schindler K, Wu S, Lacouture ME. Incidence and risk of xerosis with targeted anticancer therapies. J Am Acad Dermatol. 2015;72(4):656–67.

    Article  PubMed  Google Scholar 

  16. Santoni M, Conti A, Andrikou K, Bittoni A, Lanese A, Pistelli M, Pantano F, Vincenzi B, Armento G, Massari F, Tonini G, Cascinu S, Santini D. Risk of pruritus in cancer patients treated with biological therapies: a systematic review and meta-analysis of clinical trials. Crit Rev Oncol Hematol. 2015;96(2):206–19.

    Article  PubMed  Google Scholar 

  17. Chan RJ, Webster J, Chung B, Marquart L, Ahmed M, Garantziotis S. Prevention and treatment of acute radiation-induced skin reactions: a systematic review and meta-analysis of randomized controlled trials. BMC Cancer. 2014;14:53.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sibaud V, Lebœuf NR, Roche H, Belum VR, Gladieff L, Deslandres M, Montastruc M, Eche A, Vigarios E, Dalenc F, Lacouture ME. Dermatological adverse events with taxane chemotherapy. Eur J Dermatol. 2016;26(5):427–43.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yin ES, Totonchy MB, Leventhal JS. Nivolumab-associated vitiligo-like depigmentation in a patient with acute myeloid leukemia: a novel finding. JAAD Case Rep. 2017;3(2):90–2.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Robert C, Sibaud V, Mateus C, Verschoore M, Charles C, Lanoy E, Baran R. Nail toxicities induced by systemic anticancer treatments. Lancet Oncol. 2015;16(4):e181–9.

    Article  CAS  PubMed  Google Scholar 

  21. Garden BC, Wu S, Lacouture ME. The risk of nail changes with epidermal growth factor receptor inhibitors: a systematic review of the literature and meta-analysis. J Am Acad Dermatol. 2012;67(3):400–8.

    Article  CAS  PubMed  Google Scholar 

  22. Burtness B, Anadkat M, Basti S, Hughes M, Lacouture ME, McClure JS, Myskowski PL, Paul J, Perlis CS, Saltz L, Spencer S. NCCN Task Force Report: Management of dermatologic and other toxicities associated with EGFR inhibition in patients with cancer. J Natl Compr Cancer Netw. 2009;7(Suppl 1):S5–21.

    Article  Google Scholar 

  23. Melosky B, Leighl NB, Rothenstein J, Sangha R, Stewart D, Papp K. Management of EGFR TKI-induced dermatologic adverse events. Curr Oncol. 2015;22(2):123–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lacouture ME, Anadkat M, Jatoi A, Garawin T, Bohac C, Mitchell E. Dermatologic toxicity occurring during anti-EGFR monoclonal inhibitor therapy in patients with metastatic colorectal cancer: a systematic review. Clin Colorectal Cancer. 2018;17(2):85–96.

    Article  PubMed  Google Scholar 

  25. Dsouza PC, Kumar S. Role of systemic antibiotics in preventing epidermal growth factor receptor: tyrosine kinase inhibitors-induced skin toxicities. Asia Pac J Oncol Nurs. 2017;4(4):323–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wnorowski AM, de Souza A, Chachoua A, Cohen DE. The management of EGFR inhibitor adverse events: a case series and treatment paradigm. Int J Dermatol. 2012;51(2):223–32.

    Article  CAS  PubMed  Google Scholar 

  27. Yen CF, Hsu CK, Lu CW. Topical betaxolol for treating relapsing paronychia with pyogenic granuloma-like lesions induced by epidermal growth factor receptor inhibitors. J Am Acad Dermatol. 2018;78:e143–4.

    Article  PubMed  Google Scholar 

  28. Lacouture ME, Wu S, Robert C, Atkins MB, Kong HH, Guitart J, Garbe C, Hauschild A, Puzanov I, Alexandrescu DT, Anderson RT, Wood L, Dutcher JP. Evolving strategies for the management of hand-foot skin reaction associated with the multitargeted kinase inhibitors sorafenib and sunitinib. Oncologist. 2008;13(9):1001–11.

    Article  CAS  PubMed  Google Scholar 

  29. Anderson R, Jatoi A, Robert C, Wood LS, Keating KN, Lacouture ME. Search for evidence-based approaches for the prevention and palliation of hand-foot skin reaction (HFSR) caused by the multikinase inhibitors (MKIs). Oncologist. 2009;14(3):291–302.

    Article  CAS  PubMed  Google Scholar 

  30. Flaherty KT, Brose MS. Sorafenib-related hand-foot skin reaction improves, not worsens, with continued treatment. Clin Cancer Res. 2009;15(24):7749.

    Article  PubMed  Google Scholar 

  31. Macedo LT, Lima JP, dos Santos LV, Sasse AD. Prevention strategies for chemotherapy-induced hand-foot syndrome: a systematic review and meta-analysis of prospective randomized trials. Support Care Cancer. 2014;22(6):1585–93.

    PubMed  Google Scholar 

  32. Huang XZ, Chen Y, Chen WJ, Zhang X, Wu CC, Wang ZN, Wu J. Clinical evidence of prevention strategies for capecitabine-induced hand-foot syndrome. Int J Cancer. 2018;142(12):2567–77.

    Article  CAS  PubMed  Google Scholar 

  33. Yap YS, Kwok LL, Syn N, Chay WY, Chia JWK, Tham CK, Wong NS, Lo SK, Dent RA, Tan S, Mok ZY, Koh KX, Toh HC, Koo WH, Loh M, Ng RCH, Choo SP, Soong RCT. Predictors of hand-foot syndrome and pyridoxine for prevention of capecitabine-induced hand-foot syndrome: a randomized clinical trial. JAMA Oncol. 2017;3(11):1538–45.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jung S, Sehouli J, Chekerov R, Kluschke F, Patzelt A, Fuss H, Knorr F, Lademann J. Prevention of palmoplantar erythrodysesthesia in patients treated with pegylated liposomal doxorubicin (Caelyx®). Support Care Cancer. 2017;25(11):3545–9.

    Article  CAS  PubMed  Google Scholar 

  35. Ren Z, Zhu K, Kang H, Lu M, Qu Z, Lu L, Song T, Zhou W, Wang H, Yang W, Wang X, Yang Y, Shi L, Bai Y, Guo X, Ye SL. Randomized controlled trial of the prophylactic effect of urea-based cream on sorafenib-associated hand-foot skin reactions in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2015;33(8):894–900.

    Article  CAS  PubMed  Google Scholar 

  36. Negri FV, Porta C. Urea-based cream to prevent sorafenib-induced hand-and-foot skin reaction: which evidence? J Clin Oncol. 2015;33(28):3219–20.

    Article  CAS  PubMed  Google Scholar 

  37. von Moos R, Thuerlimann BJ, Aapro M, Rayson D, Harrold K, Sehouli J, Scotte F, Lorusso D, Dummer R, Lacouture ME, Lademann J, Hauschild A. Pegylated liposomal doxorubicin-associated hand-foot syndrome: recommendations of an international panel of experts. Eur J Cancer. 2008;44(6):781–90.

    Article  Google Scholar 

  38. Fabbrocini G, Cristaudo A, Ionescu MA, Panariello L, Robert G, Pellicano M, Ayala F. Topical non-occlusive polymers in hand-foot syndrome. G Ital Dermatol Venereol. 2018;153(2):165–71.

    PubMed  Google Scholar 

  39. Shinohara N, Nonomura N, Eto M, Kimura G, Minami H, Tokunaga S, Naito S. A randomized multicenter phase II trial on the efficacy of a hydrocolloid dressing containing ceramide with a low-friction external surface for hand-foot skin reaction caused by sorafenib in patients with renal cell carcinoma. Ann Oncol. 2014;25(2):472–6.

    Article  CAS  PubMed  Google Scholar 

  40. Deng B, Sun W. Herbal medicine for hand-foot syndrome induced by fluoropyrimidines: a systematic review and meta-analysis. Phytother Res. 2018;32:1211.

    Article  PubMed  Google Scholar 

  41. Tian A, Zhou A, Bi X, Hu S, Jiang Z, Zhang W, Huang Z, Shi H, Yang B, Chen W. Efficacy of topical compound danxiong granules for treatment of dermatologic toxicities induced by targeted anticancer therapy: a randomized, double-blind, placebo-controlled trial. Evid Based Complement Alternat Med. 2017;2017:3970601.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yucel I, Guzin G. Topical henna for capecitabine induced hand-foot syndrome. Investig New Drugs. 2008;26(2):189–92.

    Article  Google Scholar 

  43. Ilyas S, Wasif K, Saif MW. Topical henna ameliorated capecitabine-induced hand-foot syndrome. Cutan Ocul Toxicol. 2014;33(3):253–5.

    Article  CAS  PubMed  Google Scholar 

  44. Harding JJ, Pulitzer M, Chapman PB. Vemurafenib sensitivity skin reaction after ipilimumab. N Engl J Med. 2012;366(9):866–8.

    Article  CAS  PubMed  Google Scholar 

  45. Johnson DB, Wallender EK, Cohen DN, Likhari SS, Zwerner JP, Powers JG, Shinn L, Kelley MC, Joseph RW, Sosman JA. Severe cutaneous and neurologic toxicity in melanoma patients during vemurafenib administration following anti-PD-1 therapy. Cancer Immunol Res. 2013;1(6):373–7.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ludlow SP, Pasikhova Y. Cumulative dermatologic toxicity with ipilimumab and vemurafenib responsive to corticosteroids. Melanoma Res. 2013;23(6):496–7.

    Article  CAS  PubMed  Google Scholar 

  47. Bolognia JL, Cooper DL, Glusac EJ. Toxic erythema of chemotherapy: a useful clinical term. J Am Acad Dermatol. 2008;59(3):524–9.

    Article  PubMed  Google Scholar 

  48. Chanprapaph K, Vachiramon V, Rattanakaemakorn P. Epidermal growth factor receptor inhibitors: a review of cutaneous adverse events and management. Dermatol Res Pract. 2014;2014:734249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lacouture ME, Keefe DM, Sonis S, Jatoi A, Gernhardt D, Wang T, Doherty JP, Giri N, Nadanaciva S, O’Connell J, Sbar E, Piperdi B, Garon EB. A phase II study (ARCHER 1042) to evaluate prophylactic treatment of dacomitinib-induced dermatologic and gastrointestinal adverse events in advanced non-small-cell lung cancer. Ann Oncol. 2016;27(9):1712–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kripp M, Prasnikar N, Vehling-Kaiser U, Quidde J, Al-Batran SE, Stein A, Neben K, Hannig CV, Tessen HW, Trarbach T, Hinke A, Hofheinz RD. AIO LQ-0110: a randomized phase II trial comparing oral doxycycline versus local administration of erythromycin as preemptive treatment strategies of panitumumab-mediated skin toxicity in patients with metastatic colorectal cancer. Oncotarget. 2017;8(62):105061–71.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Requena C, Llombart B, Sanmartín O. Acneiform eruptions induced by epidermal growth factor receptor inhibitors: treatment with oral isotretinoin. Cutis. 2012;90(2):77–80.

    PubMed  Google Scholar 

  52. Woods JA, Ferguson JS, Kalra S, Degabriele A, Gardner J, Logan P, Ferguson J. The phototoxicity of vemurafenib: an investigation of clinical monochromator phototesting and in vitro phototoxicity testing. J Photochem Photobiol B. 2015;151:233–8.

    Article  CAS  PubMed  Google Scholar 

  53. Zimmer L, Vaubel J, Livingstone E, Schadendorf D. Side effects of systemic oncological therapies in dermatology. J Dtsch Dermatol Ges. 2012;10(7):475–86.

    PubMed  Google Scholar 

  54. Shin H, Jo SJ, Kim DH, Kwon O, Myung SK. Efficacy of interventions for prevention of chemotherapy-induced alopecia: a systematic review and meta-analysis. Int J Cancer. 2015;136(5):E442–54.

    Article  CAS  PubMed  Google Scholar 

  55. Vasconcelos I, Wiesske A, Schoenegg W. Scalp cooling successfully prevents alopecia in breast cancer patients undergoing anthracycline/taxane-based chemotherapy. Breast. 2018;40:1–3.

    Article  PubMed  Google Scholar 

  56. Shah VV, Wikramanayake TC, DelCanto GM, van den Hurk C, Wu S, Lacouture ME, Jimenez JJ. Scalp hypothermia as a preventative measure for chemotherapy-induced alopecia: a review of controlled clinical trials. J Eur Acad Dermatol Venereol. 2018;32(5):720–34.

    Article  CAS  PubMed  Google Scholar 

  57. Nangia J, Wang T, Osborne C, Niravath P, Otte K, Papish S, Holmes F, Abraham J, Lacouture M, Courtright J, Paxman R, Rude M, Hilsenbeck S, Osborne CK, Rimawi M. Effect of a scalp cooling device on alopecia in women undergoing chemotherapy for breast cancer: the SCALP randomized clinical trial. JAMA. 2017;317(6):596–605.

    Article  PubMed  Google Scholar 

  58. Kruse M, Abraham J. Management of chemotherapy-induced alopecia with scalp cooling. J Oncol Pract. 2018;14(3):149–54.

    Article  PubMed  Google Scholar 

  59. Rugo HS, Klein P, Melin SA, et al. Association between use of a scalp cooling device and alopecia after chemotherapy for breast cancer. JAMA. 2017;317(6):606–14.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rugo HS, Voigt J. Scalp hypothermia for preventing alopecia during chemotherapy. A systematic review and meta-analysis of randomized controlled trials. Clin Breast Cancer. 2018;18(1):19–28.

    Article  PubMed  Google Scholar 

  61. Witman G, Cadman E, Chen M. Misuse of scalp hypothermia. Cancer Treat Rep. 1981;65(5–6):507–8.

    CAS  PubMed  Google Scholar 

  62. Forsberg SA. Scalp cooling therapy and cytotoxic treatment. Lancet. 2001;357(9262):1134.

    Article  CAS  PubMed  Google Scholar 

  63. Rubio-Gonzalez B, Juhász M, Fortman J, Mesinkovska NA. Pathogenesis and treatment options for chemotherapy-induced alopecia: a systematic review. Int J Dermatol. 2018;57:1417.

    Article  PubMed  Google Scholar 

  64. Yeager CE, Olsen EA. Treatment of chemotherapy-induced alopecia. Dermatol Ther. 2011;24(4):432–42.

    Article  PubMed  Google Scholar 

  65. Freites-Martinez A, Shapiro J, Goldfarb S, Nangia J, Jimenez JJ, Paus R, Lacouture ME. CME Part 1: Hair disorders in cancer patients. J Am Acad Dermatol. 2019;80(5):1179–96.

    Article  PubMed  Google Scholar 

  66. Glaser DA, Hossain P, Perkins W, Griffiths T, Ahluwalia G, Weng E, Beddingfield FC. Long-term safety and efficacy of bimatoprost solution 0.03% application to the eyelid margin for the treatment of idiopathic and chemotherapy-induced eyelash hypotrichosis: a randomized controlled trial. Br J Dermatol. 2015;172(5):1384–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Freites-Martinez A, Shapiro J, van den Hurk C, Goldfarb S, Jimenez J, Rossi AM, Paus R, Lacouture ME. CME Part 2: Hair disorders in cancer survivors persistent chemotherapy-induced alopecia, persistent radiotherapy-induced alopecia, and hair growth disorders related to endocrine therapy or cancer surgery. J Am Acad Dermatol. 2018; https://doi.org/10.1016/j.jaad.2018.03.056.

  68. Göppner D, Müller J, Krüger S, et al. High incidence of naevi-associated BRAF wild-type melanoma and dysplastic naevi under treatment with the class I BRAF inhibitor vemurafenib. Acta Derm Venereol. 2014;94(5):517–20.

    Article  PubMed  Google Scholar 

  69. Perier-Muzet M, Thomas L, Poulalhon N, et al. Melanoma patients under vemurafenib: prospective follow-up of melanocytic lesions by digital dermoscopy. J Invest Dermatol. 2014;134(5):1351–8.

    Article  CAS  PubMed  Google Scholar 

  70. Chen FW, Tseng D, Reddy S, Daud AI, Swetter SM. Involution of eruptive melanocytic nevi on combination BRAF and MEK inhibitor therapy. JAMA Dermatol. 2014;150(11):1209–12.

    Article  PubMed  Google Scholar 

  71. Libon F, Arrese JE, Rorive A, Nikkels AF. Ipilimumab induces simultaneous regression of melanocytic naevi and melanoma metastases. Clin Exp Dermatol. 2013;38(3):276–9.

    Article  CAS  PubMed  Google Scholar 

  72. Burillo-Martinez S, Morales-Raya C, Prieto-Barrios M, Rodriguez-Peralto JL, Ortiz-Romero PL. Pembrolizumab-induced extensive panniculitis and nevus regression: two novel cutaneous manifestations of the post-immunotherapy granulomatous reactions spectrum. JAMA Dermatol. 2017;153(7):721–2.

    Article  PubMed  Google Scholar 

  73. Garant A, Guilbault C, Ekmekjian T, et al. Concomitant use of corticosteroids and immune checkpoint inhibitors in patients with hematologic or solid neoplasms: a systematic review. Crit Rev Oncol Hematol. 2017;120:86–92.

    Article  CAS  PubMed  Google Scholar 

  74. Arbour KC, Mezquita L, Long N, et al. Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non-small-cell lung cancer. J Clin Oncol. 2018;36(28):2872–8.

    Article  CAS  PubMed  Google Scholar 

  75. Scott SC, Pennell NA. Early use of systemic corticosteroids in patients with advanced NSCLC treated with nivolumab. J Thorac Oncol. 2018;13(11):1771–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cury-Martins, J., Abdalla, C.M.Z., Sanches, J.A. (2023). Cutaneous Adverse Events from Systemic Anticancer Treatments. In: Abdalla, C.M.Z., Sanches, J.A., Munhoz, R.R., Belfort, F.A. (eds) Oncodermatology. Springer, Cham. https://doi.org/10.1007/978-3-031-29277-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29277-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29276-7

  • Online ISBN: 978-3-031-29277-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics