Skip to main content

The Fundamentals of Schwann Cell Biology

  • Chapter
  • First Online:
Industrial Revolution in Knowledge Management and Technology

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 177 Accesses

Abstract

Schwann cells are ubiquitous in the peripheral nervous system (PNS), forming intimate enwrapments around the axons of the peripheral nerve tissues. Schwann cells exhibit two distinct phenotypes in adult animals: myelinating cells or Remak cells. Myelinating cells form the myelin sheath, facilitating the action potential saltatory conduction. On the other hand, Remak Schwann cells form non-myelinating interactions with multiple small diameter axons in Remak bundles. Besides establishing and maintaining the neurophysiological functions of axons, Schwann cells are also one of the critical regulators for axonal maintenance and metabolic support, neurodevelopment, and nerve injury response. Schwann cell reprogramming is contingent on the plasticity of Schwann cells, which is important in a wide range of Schwann cell functions, from development to nerve injury and neurodegenerative diseases. Nevertheless, our understanding of the biology of Schwann cell plasticity is still developing. Schwann cell plasticity will become increasingly prominent as a subject area in Schwann cell biology in the following decades as emerging data signify its relevance in developing therapeutic strategies for nerve injury and degenerative neuropathies such as diabetic peripheral neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Ydens, G. Lornet, V. Smits, S. Goethals, V. Timmerman, S. Janssens, The neuroinflammatory role of Schwann cells in disease. Neurobiol. Dis. 55, 95–103 (2013)

    Article  Google Scholar 

  2. N.P. Gonçalves, C.B. Vægter, L.T. Pallesen, Peripheral glial cells in the development of diabetic neuropathy. Front. Neurol. 9, 268 (2018)

    Article  Google Scholar 

  3. N.P. Gonçalves, C.B. Vægter, H. Andersen, L. Østergaard, N.A. Calcutt, T.S. Jensen, Schwann cell interactions with axons and microvessels in diabetic neuropathy. Nat. Rev. Neurol. 13(3), 135–147 (2017)

    Article  Google Scholar 

  4. A.P. Mizisin, Mechanisms of diabetic neuropathy: Schwann cells. Handb. Clin. Neurol. 126, 401–428 (2014)

    Article  Google Scholar 

  5. N. Callizot, M. Combes, R. Steinschneider, P. Poindron, A new long term in vitro model of myelination. Exp. Cell Res. 317(16), 2374–2383 (2011)

    Article  Google Scholar 

  6. R. Stavniichuk, A.A. Obrosov, V.R. Drel, J.L. Nadler, I.G. Obrosova, M.A. Yorek, 12/15-Lipoxygenase inhibition counteracts MAPK phosphorylation in mouse and cell culture models of diabetic peripheral neuropathy. Bone 3(3), 1–15 (2013)

    Google Scholar 

  7. A.M. Brown, R.D. Evans, J. Black, B.R. Ransom, Schwann cell glycogen selectively supports myelinated axon function. Bone 72(3), 406–418 (2012)

    Google Scholar 

  8. W. Hao, S. Tashiro, T. Hasegawa, Y. Sato, T. Kobayashi, T. Tando,T. Miyamoto, Hyperglycemia promotes schwann cell de-differentiation and de-myelination via sorbitol accumulation and Igf1 protein down-regulation. J. Biol. Chem. 290(28), 17106–17115 (2015)

    Google Scholar 

  9. S. Quintes, S. Goebbels, G. Saher, M.H. Schwab, K.A. Nave, Neuron-glia signaling and the protection of axon function by Schwann cells. J. Peripher. Nerv. Syst. 15(1), 10–16 (2010)

    Article  Google Scholar 

  10. J.L. Scheib, A. Höke, An attenuated immune response by Schwann cells and macrophages inhibits nerve regeneration in aged rats. Neurobiol. Aging. 1–24 (2016)

    Google Scholar 

  11. S. Poliak, E. Peles, The local differentiation of myelinated axons at nodes of ranvier. Nat. Rev. Neurosci. 4(12), 968–980 (2003)

    Article  Google Scholar 

  12. M. Simons, J. Trotter, Wrapping it up: the cell biology of myelination. Curr. Opin. Neurobiol. 17(5), 533–540 (2007)

    Article  Google Scholar 

  13. P. Morell, R.H. Quarles, The Myelin Sheath (Lippincott-Raven, 1999)

    Google Scholar 

  14. J.A. Pereira, F. Lebrun-Julien, U. Suter, Molecular mechanisms regulating myelination in the peripheral nervous system. Trends Neurosci. 35(2), 123–134 (2012)

    Article  Google Scholar 

  15. J.L. Salzer, Polarized domains of myelinated axons. Neuron 40(2), 297–318 (2003)

    Article  Google Scholar 

  16. M. Ozcelik, L. Cotter, C. Jacob, J.A. Pereira, J.B. Relvas, U. Suter, N. Tricaud, Pals1 is a major regulator of the epithelial-like polarization and the extension of the myelin sheath in peripheral nerves. J. Neurosci. 30(11), 4120–4131 (2010)

    Article  Google Scholar 

  17. K.R. Jessen, R. Mirsky, The origin and development of glial cells in peripheral nerves. Nat. Rev. Neurosci. 6(9), 671–682 (2005)

    Article  Google Scholar 

  18. B.L. Harty, K.R. Monk, Unwrapping the unappreciated: recent progress in Remak Schwann cell biology. Curr. Opin. Neurobiol. 47, 131–137 (2017)

    Article  Google Scholar 

  19. A. Viader, J.P. Golden, R.H. Baloh, R.E. Schmidt, D.A. Hunter, J. Milbrandt, Schwann cell mitochondrial metabolism supports long-term axonal survival and peripheral nerve function. J. Neurosci. 31(28), 10128–10140 (2011)

    Article  Google Scholar 

  20. J.A. Gomez-Sanchez, K.S. Pilch, M. Van Der Lans, S.V. Fazal, C. Benito, L.J. Wagstaff, K.R. Jessen et al., Development/plasticity/repair after nerve injury, lineage tracing shows that myelin and remak schwann cells elongate extensively and branch to form repair schwann cells, which shorten radically on remyelination. J. Neurosci. 37(37), 9086–9099 (2017)

    Article  Google Scholar 

  21. J.L. Salzer, Schwann cell myelination. Cold Spring Harb. Perspect. Biol. 7(8) (2015)

    Google Scholar 

  22. K.A. Nave, J.L. Salzer, Axonal regulation of myelination by neuregulin 1. Curr. Opin. Neurobiol. 16(5), 492–500 (2006)

    Article  Google Scholar 

  23. L. Mei, W.C. Xiong, Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat. Rev. Neurosci. 9(6), 437–452 (2008)

    Article  Google Scholar 

  24. J. Newbern, C. Birchmeier, Nrg1/ErbB signaling networks in Schwann cell development and myelination. Semin. Cell Dev. Biol. 21(9), 922–928 (2010)

    Article  Google Scholar 

  25. A. Mogha, A.E. Benesh, C. Patra, F.B. Engel, T. Schöneberg, I. Liebscher, K.R. Monk, Gpr126 functions in schwann cells to control differentiation and myelination via G-protein activation. J. Neurosci. 33(46), 17976–17985 (2013)

    Article  Google Scholar 

  26. T.D. Glenn, W.S. Talbot, Signals regulating myelination in peripheral nerves and the Schwann cell response to injury. Curr. Opin. Neurobiol. 23(6), 1041–1048 (2013)

    Article  Google Scholar 

  27. K.R. Monk, S.G. Naylor, T.D. Glenn, S. Mercurio, J.R. Perlin, C. Dominguez, W.S. Talbot, A G protein-coupled receptor is essential for schwann cells to initiate myelination. Science (80−) 325(5946), 1402–1405 (2009)

    Google Scholar 

  28. K.R. Monk, K. Oshima, S. Jörs, S. Heller, W.S. Talbot, Gpr126 is essential for peripheral nerve development and myelination in mammals. Development 138(13), 2673–2680 (2011)

    Article  Google Scholar 

  29. P. Maurel, J.L. Salzer, Axonal regulation of Schwann cell proliferation and survival and the initial events of myelination requires PI 3-kinase activity. J. Neurosci. 20(12), 4635–4645 (2000)

    Article  Google Scholar 

  30. T. Ogata, S.I. Yamamoto, K. Nakamura, S. Tanaka, Signaling axis in Schwann cell proliferation and differentiation. Mol. Neurobiol. 33(1), 51–61 (2006)

    Article  Google Scholar 

  31. S.C. Kao, H. Wu, J. Xie, C.P. Chang, J.A. Ranish, I.A. Graef, Crabtree G.R. (2009) Calcineurin/NFAT signaling is required for neuregulin-regulated Schwann cell differentiation. Science (80− ) 323(5914), 651–654

    Google Scholar 

  32. J.M. Newbern, X. Li, S.E. Shoemaker, J. Zhou, J. Zhong, Y. Wu, W.D. Snider et al., Specific functions for ERK/MAPK signaling during PNS development. Neuron 69(1), 91–105 (2011)

    Article  Google Scholar 

  33. M.E. Sheean, E. McShane, C. Cheret, J. Walcher, T. Müller, A. Wulf-Goldenberg, C. Birchmeier et al., Activation of MAPK overrides the termination of myelin growth and replaces Nrg1/ErbB3 signals during Schwann cell development and myelination. Genes. Dev. 28(3), 290–303 (2014)

    Article  Google Scholar 

  34. A. Ishii, M. Furusho, R. Bansal, Sustained activation of ERK1/2 MAPK in oligodendrocytes and schwann cells enhances myelin growth and stimulates oligodendrocyte progenitor expansion. J. Neurosci. 33(1), 175–186 (2013)

    Article  Google Scholar 

  35. G. Fragoso, J. Robertson, E. Athlan, E. Tam, G. Almazan, W.E. Mushynski, Inhibition of p38 mitogen-activated protein kinase interferes with cell shape changes and gene expression associated with Schwann cell myelination. Exp. Neurol. 183(1), 34–46 (2003)

    Article  Google Scholar 

  36. P.V. Monje, G. Athauda, P.M. Wood, Protein kinase A-mediated gating of neuregulin-dependent ErbB2-ErbB3 activation underlies the synergistic action of cAMP on schwann cell proliferation. J. Biol. Chem. 283(49), 34087–34100 (2008)

    Article  Google Scholar 

  37. P.V. Monje, M. Bartlett Bunge, P.M. Wood, Cyclic AMP synergistically enhances neuregulin-dependent ERK and Akt activation and cell cycle progression in Schwann cells. Glia 53(6), 649–659 (2006)

    Article  Google Scholar 

  38. P. Arthur-Farraj, K. Wanek, J. Hantke, C.M. Davis, A. Jayakar, D.B. Parkinson, K.R. Jessen et al., Mouse schwann cells need both NRG1 and cyclic AMP to myelinate. Glia 59(5), 720–733 (2011)

    Article  Google Scholar 

  39. E.S. Monuki, G. Weinmaster, R. Kuhn, G. Lemke, SCIP: a glial POU domain gene regulated by cyclic AMP. Neuron 3(6), 783–793 (1989)

    Article  Google Scholar 

  40. W. Mandemakers, R. Zwart, M. Jaegle, E. Walbeehm, P. Visser, F. Grosveld, D. Meijer, A distal Schwann cell-specific enhancer mediates axonal regulation of the Oct-6 transcription factor during peripheral nerve development and regeneration. EMBO J. 19(12), 2992–3003 (2000)

    Article  Google Scholar 

  41. J.R. Bermingham, S.S. Scherer, S. O’Connell, E. Arroyo, K.A. Kalla, F.L. Powell, M.G. Rosenfeld, Tst-1/Oct-6/SCIP regulates a unique step in peripheral myelination and is required for normal respiration. Genes. Dev. 10(14), 1751–1762 (1996)

    Article  Google Scholar 

  42. M. Jaegle, W. Mandemakers, L. Broos, R. Zwart, A. Karis, P. Visser, D. Meijer, et al., The POU factor Oct-6 and Schwann cell differentiation. Science (80− ) 273(5274), 507–510 (1996)

    Google Scholar 

  43. M. Jaegle, M. Ghazvini, W. Mandemakers, M. Piirsoo, S. Driegen, F. Levavasseur, D. Meijer et al., The POU proteins Brn-2 and Oct-6 share important functions in Schwann cell development. Genes. Dev. 17(11), 1380–1391 (2003)

    Article  Google Scholar 

  44. F.J. Sim, C. Zhao, W.W. Li, A. Lakatos, R.J.M. Franklin, Expression of the POU-domain transcription factors SCIP/Oct-6 and Brn-2 is associated with Schwann cell but not oligodendrocyte remyelination of the CNS. Mol. Cell. Neurosci. 20(4), 669–682 (2002)

    Article  Google Scholar 

  45. J. Ghislain, P. Charnay, Control of myelination in Schwann cells: a Krox20 cis-regulatory element integrates Oct6, Brn2 and Sox10 activities. EMBO Rep. 7(1), 52–58 (2006)

    Article  Google Scholar 

  46. S. David, A.J. Aguayo, Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214(4523), 931–933 (1981)

    Article  ADS  Google Scholar 

  47. P.M. Richardson, U.M. McGuinness, A.J. Aguayo, Axons from CNS neurones regenerate into PNS grafts. Nature 284(5753), 264–265 (1980)

    Article  ADS  Google Scholar 

  48. K.R. Jessen, R. Mirsky, The success and failure of the schwann cell response to nerve injury. Front. Cell. Neurosci. 13, 33 (2019)

    Article  Google Scholar 

  49. K.R. Jessen, P. Arthur-Farraj, Repair Schwann cell update: adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia 67(3), 421–437 (2019)

    Article  Google Scholar 

  50. K.R. Jessen, R. Mirsky, The repair Schwann cell and its function in regenerating nerves. J. Physiol. 594(13), 3521–3531 (2016)

    Article  Google Scholar 

  51. J.A. Gomez-Sanchez, L. Carty, M. Iruarrizaga-Lejarreta, M. Palomo-Irigoyen, M. Varela-Rey, M. Griffith, K.R. Jessen et al., Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. J. Cell. Biol. 210(1), 153–168 (2015)

    Article  Google Scholar 

  52. S. Madduri, B. Gander, Schwann cell delivery of neurotrophic factors for peripheral nerve regeneration. J. Peripher. Nerv. Syst. 15(2), 93–103 (2010)

    Article  Google Scholar 

  53. G. Nocera, C. Jacob, Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury. Cell. Mol. Life Sci. 77(20), 3977–3989 (2020)

    Article  Google Scholar 

  54. K.R. Jessen, R. Mirsky, Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia 56(14), 1552–1565 (2008)

    Article  Google Scholar 

  55. P.J. Arthur-Farraj, C.C. Morgan, M. Adamowicz, J.A. Gomez-Sanchez, S.V. Fazal, A. Beucher, T.J. Aitman et al., Changes in the coding and non-coding transcriptome and DNA methylome that define the schwann cell repair phenotype after nerve injury. Cell. Rep. 20(11), 2719–2734 (2017)

    Article  Google Scholar 

  56. A. Boerboom, V. Dion, A. Chariot, R. Franzen, Molecular mechanisms involved in schwann cell plasticity. Front. Mol. Neurosci. 17(10), 38 (2017)

    Google Scholar 

  57. X. Fontana, M. Hristova, C. Da Costa, S. Patodia, L. Thei, M. Makwana, A. Behrens et al., C-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling. J. Cell. Biol. 198(1), 127–141 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Ministry of Higher Education (MOHE) Malaysia for the financial support (FRGS/1/2019/SKK08/UNIKL/02/3). We also greatly appreciate the financial support from Universiti Kuala Lumpur (UniKL/CoRI/str17089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Fauzi Daud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abd Razak, N.H., Zainey, A.S., Idris, J., Daud, M.F. (2023). The Fundamentals of Schwann Cell Biology. In: Ismail, A., Nur Zulkipli, F., Jaafar, J., Öchsner, A. (eds) Industrial Revolution in Knowledge Management and Technology. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-29265-1_13

Download citation

Publish with us

Policies and ethics