Skip to main content

Kinetics and Mechanism of Si(IV) Electroreduction in Na3AlF6–Al2O3–SiO2 Melts on Al Cathode

  • Chapter
  • First Online:
Electrolytic Production of Al–Si Alloys

Abstract

It was shown that the electrochemical reduction of Si(IV) proceeds stepwise, and its intermediate has a limited solubility, above which a passivating deposit [Si(II)]solid is formed at the interface. The condition for the precipitation of the latter is the passivation criterion PCSi(II)=[СSiO2][аSi(Сu)]=(1.27± 0.25)×10-4. It is obvious that when developing a technology for producing Al‒Si alloys, it is necessary to find such mode of loading SiO2 into an electrolytic cell which eliminates this negative phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sukhotin AM (1981) Spravochnik po elektrokhimii (Handbook on electrochemistry). Khimiya, Leningrad, 488 p (in Russian)

    Google Scholar 

  2. Efimov EA, Erusalimchik IG (1963) Elektrokhimiya germaniya i kremniya (Electrochemistry of germanium and silicon). Goskhimizdat, Moscow, 180 p (in Russian)

    Google Scholar 

  3. Minet A (1891) Comp Rend 112:1215–1218

    Google Scholar 

  4. Esin OA (1970) Fizicheskaya khimiya rasplavlennykh shlakov (Physical chemistry of molten slags). Naukova Dumka, Kiev, pp 5–34 (in Russian)

    Google Scholar 

  5. Novokshonov NI, Nikitin YuP, Novoladskiy VP, Vlasov NN (1974) Elektrokhimiya i rasplavy (Electrochemistry and melts). Nauka, Moscow, pp 79–82 (in Russian)

    Google Scholar 

  6. Delimarskiy YuK (1980) Khimiya ionnykh rasplavov (Chemistry of ionic melts). Naukova Dumka, Kiev, 328 p (in Russian)

    Google Scholar 

  7. Andriiko AA, Andriiko YuA, Nauer GE (2013) Many electron electrochemical process, vol XIX. Springer, 167 p

    Google Scholar 

  8. Samsonov HV (1965) Fiziko-khimicheskiye svoistva elementov (Physico-chemical properties of elements). Naukova Dumka, Kiev, 808 p (in Russian)

    Google Scholar 

  9. Geld PV, Esin OA (1957) Protsessy vysokotemperaturnogo vosstanovleniya (High temperature reduction processes). Metallurgizdat, Sverdlovsk, 646 p (in Russian)

    Google Scholar 

  10. Kozhevnikov GN, Vodopianov AG (1977) Nizshye okisly kremniya i aliuminiya v elektrometallurgii (Low valency oxides of silicon and aluminum in electrometallurgy). Nauka, Moscow, 145 p (in Russian)

    Google Scholar 

  11. Rusakov LN, Dubrovin AS (1963) Proc USSR Acad Sci 149:107–110 (in Russian)

    CAS  Google Scholar 

  12. Rusakov LN, Dubrovin AS, Lyakishev NP (1972) Commun USSR Acad Sci Met 2:31–36 (in Russian)

    Google Scholar 

  13. Belyaev AI (1947) Fiziko-khimicheskiye protsessy pri electrolyze aluminiya (Physico-chemical processes in aluminum electrolysis). Metallurgizdat, Moscow, 183 p (in Russian)

    Google Scholar 

  14. Monier R, Barakat D (1957) Helv Chim Acta 40:2041–2045

    Article  Google Scholar 

  15. Grijotheim K, Matiosovsky K, Fellner P (1972) Rev Rom Chim 17:819–829

    Google Scholar 

  16. Frazer EJ, Welsh DJ (1977) Electrochim Acta 22:1179–1182

    Article  CAS  Google Scholar 

  17. Brönsted J, Kane N (1931) J Am Chem Soc 53:3624–3644

    Article  Google Scholar 

  18. Frumkin AN (1932) Z Phys Chem A 160(2):116–118

    Article  Google Scholar 

  19. Hammet L, Lorch A (1932) J Am Chem Soc 54:2128–2129

    Article  Google Scholar 

  20. Kaesche H (1979) Die Korrosion der Metalle. Springer-Verlag, Berlin, Heidelberg, New York, 400 p

    Google Scholar 

  21. Antropov LI, Donchenko MI (1973) Itogi nauki i tekhniki. Korroziya i zaschita ot korrozii (Achievements in science and technology. Corrosion and corrosion protection), vol 2. VINITI, Moscow, pp 113–170 (in Russian)

    Google Scholar 

  22. Delimarskii YuK, Pruttskov DV, Andriiko AA, Chernov RV (1983) Ukr Chem J 49:739–742 (in Russian)

    Google Scholar 

  23. Pruttskov DV, Andriiko AA, Chernov RV, Delimarskii YuK, Khvalin AP (1983) Ukr Chem J 49:845–849 (in Russian)

    Google Scholar 

  24. Pruttskov DV, Pirozhkova VP, Khvalin AP, Chernov RV, Delimarskii YuK (1983) Ukr Chem J 49:1027–1030 (in Russian)

    Google Scholar 

  25. Pruttskov DV, Pirozhkova VP, Chernov RV, Khvalin AP (1984) Ukr Chem J 50:1082–1085 (in Russian)

    CAS  Google Scholar 

  26. Pruttskov DV, Andriiko AA, Delimarskii YuK, Chernov RV (1985) Ukr Chem J 51:826–830 (in Russian)

    Google Scholar 

  27. Pruttskov DV (1986) Ionnye rasplavy i tverdye electrolity (Ionic melts and solid electrolytes), vol 1. Naukova Dumka, Kiev, pp 70–77 (in Russian)

    Google Scholar 

  28. Pruttskov DV, Andriiko AA, Chernov RV (1987) Tsvetnye Met (Non-ferrous Met) 2:39–43 (in Russian)

    Google Scholar 

  29. Pruttskov DV, Krivoruchko NP, Olesov YuG (1994) Ukr Chem J 60:433–439 (in Russian)

    Google Scholar 

  30. Berton O, Petot-Ervas G, Petot C, Desre P (1969) Comp Rend Ser C 268:1939–1942

    Google Scholar 

  31. Batalin GI, Beloborodova EA, Stukalo VA (1971) Commun USSR Acad Sci Met 2:69–74 (in Russian)

    Google Scholar 

  32. Schaefer SC (1974) Rept Invest Bur Mines US Dep Inter 7895:1–15

    Google Scholar 

  33. Stroganov GB, Rotenberg VA, Gershman GB (1977) Splavy aliuminiya s kremniyem (Alloys of aluminum with silicon). Metallurgy, Moscow, 272 p (in Russian)

    Google Scholar 

  34. Gorji YM, Soltanieh M, Habibolahzaden A (2007) Can Metall Q 46:385–390

    Article  CAS  Google Scholar 

  35. Winchell AN, Winchell H (1964) The microscopical characters of artificial inorganic solid substances. Optical properties of artificial minerals. Academic Press, New York, 439 p

    Google Scholar 

  36. Milov AI (1980) Kompleksnaya pererabotka rud tsvetnykh metallov (Complex processing the ores of non-ferrous metals). Science, Alma-Ata, pp 98–107 (in Russian)

    Google Scholar 

  37. Belyaev AI (1944) Metallurgiya legkikh metallov (Metallurgy of light metals). Metalurgistdat, Moscow, 843 p (in Russian)

    Google Scholar 

  38. Nerubashchenko VV, Krymov AP, Voleinik VV (1977) Tsvetnye Met (Non-ferrous Met) 7:29–31 (in Russian)

    Google Scholar 

  39. Nerubashchenko VV, Voleinik VV, Krymov AP (1978) Tsvetnye Met (Non-ferrous Met) 3:36 (in Russian)

    Google Scholar 

  40. Zakharov MS, Bakanov VI, Pnev VV (1978) Khronopotentsiometriya (Chronopotentiometry). Khimiya, Moscow, 200 p (in Russian)

    Google Scholar 

  41. Khushkhov KhB, Malyshev VV, Gasviani SG, Shapoval VI, Gasviani NA (1991) Ukr Chem J 57:1097–1100 (in Russian)

    Google Scholar 

  42. Grjotheim K, Brdicka P, Silny A, Matiasovsky K, Stubergh J (1991) Can Metall Q 30:107–111

    Article  CAS  Google Scholar 

  43. Sokhanvaran S, Barati M (2014) J Electrochem Soc 161(1):E6–E11

    Article  CAS  Google Scholar 

  44. Liu A, Shi Z, Hu X, Gao B, Wang Z (2017) J Electrochem Soc 164(2):H126–H133

    Article  CAS  Google Scholar 

  45. Chart TG (1973) High Temp High Press 5:241–252

    Google Scholar 

  46. Beloborodova EI, Zinkevich TN, Gab AI, Pruttskov DV, Bondarenko GN (1994) Protsessy litia (Casting processes), vol 2, pp 55–65 (in Russian)

    Google Scholar 

  47. Kravtsov VI (1985) Ravnovesiya i kinetika elektrodnykh reaktsiy kompleksov metallov (Equilibrium and kinetics of electrode reactions with metal complexes). Khimiya, Leningrad, 208 p (in Russian)

    Google Scholar 

  48. Delimarskiy YuK, Zarubitskiy OG (1971) Proc USSR Acad Sci Ser B 8:709–710 (in Russian)

    Google Scholar 

  49. Dickerson RE, Gray HB, Haight GP (1979) Chemical principles, 3rd edn. The Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA. ISBN 0805323988. https://resolver.caltech.edu/CaltechBOOK:1979.001

  50. Grafov BM, Ukshe EA (1973) Elektrokhimicheskiye tsepi peremennogo toka (Electrochemical circuits of alternating current). Nauka, Moscow, 128 p (in Russian)

    Google Scholar 

  51. Damaskin BB (1965) Printsipy sovremennykh metodov izucheniya elektrokhimicheskikh reaktsiy (Principles of the modern methods for studies of electrochemical reactions). MGU, Moscow, 104 p (in Russian)

    Google Scholar 

  52. Thonstad J, Rolseth S (1978) Electrochim Acta 23:223–241

    Google Scholar 

  53. Gorodysskiy AV (1988) Voltamperometriya, Kinetika statsionarnogo elektroliza (Voltamperometry: kinetics of stationary electrolysis). Naukova Dumka, Kiev, 176 p (in Russian)

    Google Scholar 

  54. Antropov LI (1984) Theoretical electrochemistry. Vysshayashkola, Moscow (in Russian) (English edition: 1972, Mir Publishers, Moscow)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Andriiko .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pruttskov, D., Andriiko, A., Kirichenko, A. (2023). Kinetics and Mechanism of Si(IV) Electroreduction in Na3AlF6–Al2O3–SiO2 Melts on Al Cathode. In: Electrolytic Production of Al–Si Alloys. Monographs in Electrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-29249-1_2

Download citation

Publish with us

Policies and ethics