Skip to main content

Dimorphism and Pathogenesis in Mucor Species

  • Chapter
  • First Online:
Evolution of Fungi and Fungal-Like Organisms

Part of the book series: The Mycota ((MYCOTA,volume 14))

  • 710 Accesses

Abstract

Many pathogenic fungi are dimorphic, in which they switch the morphology between yeast and filamentous forms. This dimorphism has been observed in the Dikarya. Interestingly, the genus Mucor is the only group of fungi among the early diverged fungi outside of the Dikarya that exhibits the yeast–hyphae transition. Their morphogenic switch is controlled by environmental factors such as low oxygen and high carbon dioxide concentrations. Genetically, the genes encoding G-protein coupled receptors (GPCR), a serine/threonine phosphatase calcineurin, and subunits of protein kinase A (PKA) all have been documented in the regulation of the dimorphic transitions in Mucor. Mucor circinelloides is one of causative agents of the deadly opportunistic fungal infection mucormycosis. Similar to other known dimorphic fungi (e.g. Candida albicans and Coccidioides species), the morphology directly contributes to the virulence of this fungus. Upon entering a host, it grows as filamentous hyphae and invades the host tissue. This chapter further highlights the recent findings on how genes and the environment play a critical role in dimorphism and the virulence in Mucor and discusses how these findings can serve as a platform for new therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aoki S, Ito-Kuwa S (1982) Respiration of Candida albicans in relation to its morphogenesis. Plant Cell Physiol 23(4):721–726

    Google Scholar 

  • Bartnicki-García S (1963) III. Mold-yeast dimorphism of mucor. Bacteriol Rev 27(3):293–304

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartnicki-Garcia S, Nickerson WJ (1962a) Isolation, composition, and structure of cell walls of filamentous and yeast-like forms of Mucor rouxii. Biochim Biophys Acta 58(1):102–119

    Article  CAS  PubMed  Google Scholar 

  • Bartnicki-Garcia S, Nickerson WJ (1962b) Nutrition, growth, and morphogenesis of Mucor rouxii. J Bacteriol 84(4):841–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckerman M (2005) Signaling in the endocrine and nervous systems through GPCRs. Mol Cell Signal 2005:275–303

    Google Scholar 

  • Calo S, Shertz-Wall C, Lee SC, Bastidas RJ, Nicolás FE, Granek JA, Mieczkowski P, Torres-Martínez S, Ruiz-Vázquez RM, Cardenas ME, Heitman J (2014) Antifungal drug resistance evoked via RNAi-dependent epimutations. Nature 513(7519):555–558. https://doi.org/10.1038/nature13575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Challa S (2019) Mucormycosis: pathogenesis and pathology. Curr Fungal Infect Rep 13(1):11–20

    Article  Google Scholar 

  • Clark-Walker G (1973) Relationship between dimorphology and respiration in Mucor genevensis studied with chloramphenicol. J Bacteriol 116(2):972–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole GT, Sun S (1985) Arthroconidium-spherule-endospore transformation in Coccidioides immitis. In: Fungal dimorphism. Springer, New York, pp 281–333

    Chapter  Google Scholar 

  • Cutler JE (1991) Putative virulence factors of Candida albicans. Annu Rev Microbiol 45:187–218

    Article  CAS  PubMed  Google Scholar 

  • D'Souza CA, Heitman J (2001) Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol Rev 25(3):349–364

    Article  CAS  PubMed  Google Scholar 

  • Friedenthal M, Epstein A, Passeron S (1974) Effect of potassium cyanide, glucose and anaerobiosis on morphogenesis of Mucor rouxii. Microbiology 82(1):15–24

    Google Scholar 

  • Garcia J, Hiatt W, Peters J, Sypherd P (1980) S-Adenosylmethionine levels and protein methylation during morphogenesis of Mucor racemosus. J Bacteriol 142(1):196–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia A, Adedoyin G, Heitman J, Lee SC (2017) Construction of a recyclable genetic marker and serial gene deletions in the human pathogenic Mucorales Mucor circinelloides. G3 (Bethesda) 7(7):2047–2054. https://doi.org/10.1534/g3.117.041095

    Article  CAS  PubMed  Google Scholar 

  • Gordon P, Lowdon M, Stewart P (1972) Effects of chloramphenicol isomers and erythromycin on enzyme and lipid synthesis induced by oxygen in wild-type and petite yeast. J Bacteriol 110(2):504–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulati M, Nobile CJ (2016) Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect 18(5):310–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haider M, Dambuza IM, Asamaphan P, Stappers M, Reid D, Yamasaki S, Brown GD, Gow NA, Erwig LP (2019) The pattern recognition receptors dectin-2, mincle, and Far impact the dynamics of phagocytosis of Candida, Saccharomyces, Malassezia, and Mucor species. PLoS One 14(8):e0220867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooke R (1667) Micrographia. Royal Society, London

    Google Scholar 

  • Hooks MA (1994) Tacrolimus, a new immunosuppressant: a review of the literature. Ann Pharmacother 28(4):501–511. https://doi.org/10.1177/106002809402800414

    Article  CAS  PubMed  Google Scholar 

  • Islam MR, Tudryn G, Bucinell R, Schadler L, Picu RC (2017) Morphology and mechanics of fungal mycelium. Sci Rep 7(1):13070. https://doi.org/10.1038/s41598-017-13295-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juvvadi PR, Lee SC, Heitman J, Steinbach WJ (2017) Calcineurin in fungal virulence and drug resistance: prospects for harnessing targeted inhibition of calcineurin for an antifungal therapeutic approach. Virulence 8(2):186–197

    Article  CAS  PubMed  Google Scholar 

  • Kirkland TN, Fierer J (2018) Coccidioides immitis and posadasii; a review of their biology, genomics, pathogenesis, and host immunity. Virulence 9(1):1426–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knop M (2011) Yeast cell morphology and sexual reproduction: a short overview and some considerations. C R Biol 334(8–9):599–606

    Article  PubMed  Google Scholar 

  • Kronstad J, De Maria A, Funnell D, Laidlaw RD, Lee N, de Sá MM, Ramesh M (1998) Signaling via cAMP in fungi: interconnections with mitogen-activated protein kinase pathways. Arch Microbiol 170(6):395–404

    Article  CAS  PubMed  Google Scholar 

  • Laundon D, Chrismas N, Wheeler G, Cunliffe M (2020) Chytrid rhizoid morphogenesis resembles hyphal development in multicellular fungi and is adaptive to resource availability. Proc R Soc B 287(1928):20200433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SC, Li A, Calo S, Heitman J (2013) Calcineurin plays key roles in the dimorphic transition and virulence of the human pathogenic zygomycete Mucor circinelloides. PLoS Pathog 9(9):e1003625. https://doi.org/10.1371/journal.ppat.1003625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SC, Li A, Calo S, Inoue M, Tonthat NK, Bain JM, Louw J, Shinohara ML, Erwig LP, Schumacher MA, Ko DC, Heitman J (2015) Calcineurin orchestrates dimorphic transitions, antifungal drug responses and host–pathogen interactions of the pathogenic mucoralean fungus Mucor circinelloides. Mol Microbiol 97(5):844–865. https://doi.org/10.1111/mmi.13071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Wright SJ, Krystofova S, Park G, Borkovich KA (2007) Heterotrimeric G protein signaling in filamentous fungi. Annu Rev Microbiol 61:423–452. https://doi.org/10.1146/annurev.micro.61.080706.093432

    Article  CAS  PubMed  Google Scholar 

  • Linz JE, Orlowski M (1991) Differential gene expression and evidence of selective translation during anaerobic germination of Mucor racemosus sporangiospores. Microbiology 137(4):827–835

    CAS  Google Scholar 

  • Lübbehüsen T, Polo VG, Rossi S, Nielsen J, Moreno S, McIntyre M, Arnau J (2004) Protein kinase A is involved in the control of morphology and branching during aerobic growth of Mucor circinelloides. Microbiology 150(1):143–150. https://doi.org/10.1099/mic.0.26708-0

    Article  CAS  PubMed  Google Scholar 

  • Mitchell AP (1998) Dimorphism and virulence in Candida albicans. Curr Opin Microbiol 1(6):687–692

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Hernández B, Palma-Cortés G, Cabello-Gutiérrez C, Martínez-Rivera MA (2014) Parasitic polymorphism of Coccidioides spp. BMC Infect Dis 14(1):1–9

    Article  Google Scholar 

  • Nadal M, García-Pedrajas MD, Gold SE (2008) Dimorphism in fungal plant pathogens. FEMS Microbiol Lett 284(2):127–134. https://doi.org/10.1111/j.1574-6968.2008.01173.x

    Article  CAS  PubMed  Google Scholar 

  • Nagy LG, Tóth R, Kiss E, Slot J, Gácser A, Kovács GM (2017) Six key traits of fungi: their evolutionary origins and genetic bases. Microbiol Spectr 5(4). https://doi.org/10.1128/microbiolspec.FUNK-0036-2016

  • Navarro-Mendoza MI, Pérez-Arques C, Murcia L, Martínez-García P, Lax C, Sanchis M, Capilla J, Nicolás FE, Garre V (2018) Components of a new gene family of ferroxidases involved in virulence are functionally specialized in fungal dimorphism. Sci Rep 8(1):7660. https://doi.org/10.1038/s41598-018-26051-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orlowski M (1991) Mucor dimorphism. Microbiol Rev 55(2):234–258. https://doi.org/10.1128/mr.55.2.234-258.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parish JM, Blair JE (2008) Coccidioidomycosis. In: Mayo Clinic proceedings, vol 3. Elsevier, New York, pp 343–349

    Google Scholar 

  • Pasteur L (1876) Études sur la bière, ses maladies, causes qui les provoquent, procédé pour la rendre inaltérable: avec une théorie nouvelle de la fermentation. Gauthier-Villars, Paris

    Google Scholar 

  • Prostak SM, Robinson KA, Titus MA, Fritz-Laylin LK (2021) The actin networks of chytrid fungi reveal evolutionary loss of cytoskeletal complexity in the fungal kingdom. Curr Biol 31(6):1192–1205.e1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid G, Lynch JP III, Fishbein MC, Clark NM (2020) Mucormycosis. In: Seminars in respiratory and critical care medicine, vol 01. Thieme Medical Publishers, New York, pp 099–114

    Google Scholar 

  • Rogers P, Clark-Walker G, Stewart P (1974) Effects of oxygen and glucose on energy metabolism and dimorphism of Mucor genevensis grown in continuous culture: reversibility of yeast-mycelium conversion. J Bacteriol 119(1):282–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saudohar M, Bencina M, van de Vondervoort PJ, Panneman H, Legisa M, Visser J, Ruijter GJ (2002) Cyclic AMP-dependent protein kinase is involved in morphogenesis of Aspergillus nigeraaThe EMBL accession number for the sequence reported in this paper is AJ296317. Microbiology 148(8):2635–2645

    Article  PubMed  Google Scholar 

  • Schulz BE, Kraepelin G, Hinkelmann W (1974) Factors affecting dimorphism in Mycotypha (Mucorales): a correlation with the fermentation/respiration equilibrium. Microbiology 82(1):1–13

    CAS  Google Scholar 

  • Schwarz P, Schwarz PV, Felske-Zech H, Dannaoui E (2019) In vitro interactions between isavuconazole and tacrolimus, cyclosporin A or sirolimus against Mucorales. J Antimicrob Chemother 74(7):1921–1927

    Article  CAS  PubMed  Google Scholar 

  • Shapiro RS, Cowen LE (2012) Uncovering cellular circuitry controlling temperature-dependent fungal morphogenesis. Virulence 3(4):400–404

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith C, Lee SC (2022) Current treatments against mucormycosis and future directions. PLoS Pathog 18(10):e1010858. https://doi.org/10.1371/journal.ppat.1010858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudbery P, Gow N, Berman J (2004) The distinct morphogenic states of Candida albicans. Trends Microbiol 12(7):317–324

    Article  CAS  PubMed  Google Scholar 

  • Taylor SS, Knighton DR, Zheng J, Ten Eyck LF, Sowadski JM (1992) Structural framework for the protein kinase family. Annu Rev Cell Biol 8:429–462

    Article  CAS  PubMed  Google Scholar 

  • Thevelein JM, De Winde JH (1999) Novel sensing mechanisms and targets for the cAMP–protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33(5):904–918. https://doi.org/10.1046/j.1365-2958.1999.01538.x

    Article  CAS  PubMed  Google Scholar 

  • Valle-Maldonado MI, Jácome-Galarza IE, Díaz-Pérez AL, Martínez-Cadena G, Campos-García J, Ramírez-Díaz MI, Reyes-De la Cruz H, Riveros-Rosas H, Díaz-Pérez C, Meza-Carmen V (2015) Phylogenetic analysis of fungal heterotrimeric G protein-encoding genes and their expression during dimorphism in Mucor circinelloides. Fungal Biol 119(12):1179–1193. https://doi.org/10.1016/j.funbio.2015.08.009

    Article  CAS  PubMed  Google Scholar 

  • Valle-Maldonado MI, Patiño-Medina JA, Pérez-Arques C, Reyes-Mares NY, Jácome-Galarza IE, Ortíz-Alvarado R, Vellanki S, Ramírez-Díaz MI, Lee SC, Garre V, Meza-Carmen V (2020) The heterotrimeric G-protein beta subunit Gpb1 controls hyphal growth under low oxygen conditions through the protein kinase A pathway and is essential for virulence in the fungus Mucor circinelloides. Cell Microbiol 22(10):e13236. https://doi.org/10.1111/cmi.13236

    Article  CAS  PubMed  Google Scholar 

  • Vellanki S, Billmyre RB, Lorenzen A, Campbell M, Turner B, Huh EY, Heitman J, Lee SC (2020) A novel resistance pathway for calcineurin inhibitors in the human-pathogenic Mucorales mucor circinelloides. mBio 11(1). https://doi.org/10.1128/mBio.02949-19

  • Williams CR, Gooch JL (2012) Calcineurin inhibitors and immunosuppression: a tale of two isoforms. Expert Rev Mol Med 14

    Google Scholar 

  • Wolff AM, Appel KF, Petersen JB, Poulsen U, Arnau J (2002) Identification and analysis of genes involved in the control of dimorphism in Mucor circinelloides (syn. racemosus). FEMS Yeast Res 2(2):203–213. https://doi.org/10.1111/j.1567-1364.2002.tb00085.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo Chan Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garcia, A., Smith, C.P., Lee, S.C. (2023). Dimorphism and Pathogenesis in Mucor Species. In: Pöggeler, S., James, T. (eds) Evolution of Fungi and Fungal-Like Organisms. The Mycota, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-031-29199-9_4

Download citation

Publish with us

Policies and ethics