Abstract
Fungi can be found in virtually every habitat on earth. Over time, they evolved strategies to survive even the most challenging conditions, leading to their enormous diversity. For their survival in the habitat they have acquired the ability to produce a multitude of secondary metabolites, also named natural products. These unusual low-molecular-weight compounds exhibit a variety of effects, ranging from antimicrobial activity to protective compounds and information molecules for neighboring microorganisms. Through these effects, our recent data substantiate the hypothesis that secondary metabolites shape the composition of microbial consortia (microbiomes) by reducing or promoting the growth of certain microorganisms or changing their metabolic activity. Genetic analyses indicate that fungi have the potential to produce far more secondary metabolites than have been identified yet. Their encoding biosynthesis gene clusters remain silent under laboratory conditions and the ecological context is required for their activation. Therefore, we have initiated research on the activation of such silent gene clusters by microbial communication. Since then, many studies attempted to mimic naturally inducing conditions, e.g., by varying culture conditions, genetic manipulation of the producing organism, or co-culturing of multiple microorganisms. Elucidating the ecological roles of these compounds and the underlying triggers leading to their production is of major importance for our understanding of how microbial communities are shaped and how complex interactive networks can be formed with their profound influence on human health and the environment. Further, understanding the ecological trigger regulating the production of secondary metabolites will allow us to shed light on the pool of yet unidentified compounds in search for potential new antibiotics and other useful compounds.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agus A, Clément K, Sokol H (2021) Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut 70(6):1174–1182. https://doi.org/10.1136/gutjnl-2020-323,071
Almeida F, Rodrigues ML, Coelho C (2019) The still underestimated problem of fungal diseases worldwide. Front Microbiol 10:214. https://doi.org/10.3389/fmicb.2019.00214
Andryukov B, Mikhailov V, Besednova N (2019) The biotechnological potential of secondary metabolites from marine bacteria. J Mar Sci Eng 7(6):176. https://doi.org/10.3390/jmse7060176
Arias M, Santiago L, Vidal-Garcia M, Redrado S, Lanuza P, Comas L, Domingo MP, Rezusta A, Galvez EM (2018) Preparations for invasion: modulation of host lung immunity during pulmonary aspergillosis by gliotoxin and other fungal secondary metabolites. Front Immunol 9:2549. https://doi.org/10.3389/fimmu.2018.02549
Arst HN, Peñalva MA (2003) Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol Mol Biol Rev 40(1):1–3. https://doi.org/10.1016/s1087-1845(03)00077-x
Augner D, Krut O, Slavov N, Gerbino DC, Sahl HG, Benting J, Nising CF, Hillebrand S, Krönke M, Schmalz HG (2013) On the antibiotic and antifungal activity of pestalone, pestalachloride A, and structurally related compounds. J Nat Prod 76(8):1519–1522. https://doi.org/10.1021/np400301d
Azzollini A, Boggia L, Boccard J, Sgorbini B, Lecoultre N, Allard PM, Rubiolo P, Rudaz S, Gindro K, Bicchi C, Wolfender JL (2018) Dynamics of metabolite induction in fungal co-cultures by metabolomics at both volatile and non-volatile levels. Front Microbiol 9:72. https://doi.org/10.3389/fmicb.2018.00072
Barda O, Maor U, Sadhasivam S, Bi Y, Zakin V, Prusky D, Sionov E (2020) The pH-responsive transcription factor PacC governs pathogenicity and ochratoxin A biosynthesis in Aspergillus carbonarius. Front Microbiol 11:210. https://doi.org/10.3389/fmicb.2020.00210
Bärenstrauch M, Mann S, Jacquemin C, Bibi S, Sylla O-K, Baudouin E, Buisson D, Prado S, Kunz C (2020) Molecular crosstalk between the endophyte Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum – modulation of lipoxygenase activity and beauvericin production during the interaction. Fungal Genetics Biol 139:103383. https://doi.org/10.1016/j.fgb.2020.103383
Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320(5882):1504–1506. https://doi.org/10.1126/science.1155888
Begum N, Akhtar K, Ahanger MA, Iqbal M, Wang P, Mustafa NS, Zhang L (2021) Arbuscular mycorrhizal fungi improve growth, essential oil, secondary metabolism, and yield of tobacco (Nicotiana tabacum L.) under drought stress conditions. Environ Sci Pollut Res Int 28(33):45276–45295. https://doi.org/10.1007/s11356-021-13,755-3
Beswick E, Amich J, Gago S (2020) Factoring in the complexity of the cystic fibrosis lung to understand Aspergillus fumigatus and Pseudomonas aeruginosa interactions. Pathogens 9(8). https://doi.org/10.3390/pathogens9080639
Bizukojc M, Pawlak M, Boruta T, Gonciarz J (2012) Effect of pH on biosynthesis of lovastatin and other secondary metabolites by Aspergillus terreus ATCC 20542. J Biotechnol 162(2–3):253–261. https://doi.org/10.1016/j.jbiotec.2012.09.007
Blanc PL, Tuveson RW, Sargent ML (1976) Inactivation of carotenoid-producing and albino strains of Neurospora crassa by visible light, blacklight, and ultraviolet radiation. J Bacteriol 125(2):616–625. https://doi.org/10.1128/jb.125.2.616-625.1976
Bluhm BH, Woloshuk CP (2005) Amylopectin induces fumonisin B1 production by Fusarium verticillioides during colonization of maize kernels. Mol Plant Microbe Interact 18(12):1333–1339. https://doi.org/10.1094/MPMI-18-1333
Bok JW, Keller NP (2004) LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell 3(2):527–535. https://doi.org/10.1128/EC.3.2.527-535.2004
Borthwick AD (2012) 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem Rev 112(7):3641–3716. https://doi.org/10.1021/cr200398y
Boruta T, Bizukojc M (2016) Induction of secondary metabolism of Aspergillus terreus ATCC 20542 in the batch bioreactor cultures. Appl Microbiol Biotechnol 100(7):3009–3022. https://doi.org/10.1007/s00253-015-7157-1
Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma LJ, Sessitsch A (2017) Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu Rev Phytopathol 55:61–83. https://doi.org/10.1146/annurev-phyto-080516-035641
Braga GU, Rangel DE, Flint SD, Anderson AJ, Roberts DW (2006) Conidial pigmentation is important to tolerance against solar-simulated radiation in the entomopathogenic fungus Metarhizium anisopliae. Photochem Photobiol 82(2):418–422. https://doi.org/10.1562/2005-05-08-RA-52
Brakhage AA (1998) Molecular regulation of β-lactam biosynthesis in filamentous fungi. Microbiol Mol Biol Rev 62(3):547–585. https://doi.org/10.1128/MMBR.62.3.547-585.1998
Brakhage AA (2005) Systemic fungal infections caused by Aspergillus species: epidemiology, infection process and virulence determinants. Curr Drug Targets 6(8):875–886. https://doi.org/10.2174/138945005774912717
Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11(1):21–32. https://doi.org/10.1038/nrmicro2916
Broom L (2015) Mycotoxins and the intestine. Anim Nutr 1(4):262–265. https://doi.org/10.1016/j.aninu.2015.11.001
Brosch G, Ransom R, Lechner T, Walton JD, Loidl P (1995) Inhibition of maize histone deacetylases by HC toxin, the host-selective toxin of Cochliobolus carbonum. Plant Cell 7(11):1941–1950. https://doi.org/10.1105/tpc.7.11.1941
Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4(165):165rv113. https://doi.org/10.1126/scitranslmed.3004404
Brown AJP, Cowen LE, di Pietro A, Quinn J (2017) Stress adaptation. Microbiol Spectr 5(4). https://doi.org/10.1128/microbiolspec.FUNK-0048-2016
Brunner K, Peterbauer CK, Mach RL, Lorito M, Zeilinger S, Kubicek CP (2003) The Nag1 N-acetylglucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin and of major relevance to biocontrol. Curr Genet 43(4):289–295. https://doi.org/10.1007/s00294-003-0399-y
Bruns S, Seidler M, Albrecht D, Salvenmoser S, Remme N, Hertweck C, Brakhage AA, Kniemeyer O, Müller FM (2010) Functional genomic profiling of Aspergillus fumigatus biofilm reveals enhanced production of the mycotoxin gliotoxin. Proteomics 10(17):3097–3107. https://doi.org/10.1002/pmic.201000129
Bugeja HE, Hynes MJ, Andrianopoulos A (2012) AreA controls nitrogen source utilisation during both growth programs of the dimorphic fungus Penicillium marneffei. Fungal Biol 116(1):145–154. https://doi.org/10.1016/j.funbio.2011.10.009
Bünemann EK, Bongiorno G, Bai Z, Creamer RE, De Deyn G, de Goede R, Fleskens L, Geissen V, Kuyper TW, Mäder P, Pulleman M, Sukkel W, van Groenigen JW, Brussaard L (2018) Soil quality – a critical review. Soil Biol Biochem 120:105–125. https://doi.org/10.1016/j.soilbio.2018.01.030
Caballero Ortiz S, Trienens M, Rohlfs M (2013) Induced fungal resistance to insect grazing: reciprocal fitness consequences and fungal gene expression in the Drosophila-Aspergillus model system. PLoS One 8(8):e74951. https://doi.org/10.1371/journal.pone.0074951
Caceres I, Khoury AA, Khoury RE, Lorber S, Oswald IP, Khoury AE, Atoui A, Puel O, Bailly JD (2020) Aflatoxin biosynthesis and genetic regulation: a review. Toxins (Basel) 12(3). https://doi.org/10.3390/toxins12030150
Caesar LK, Kelleher NL, Keller NP (2020) In the fungus where it happens: History and future propelling Aspergillus nidulans as the archetype of natural products research. Fungal Genet Biol 144:103477. https://doi.org/10.1016/j.fgb.2020.103477
Cepeda-García C, Domínguez-Santos R, García-Rico RO, García-Estrada C, Cajiao A, Fierro F, Martín JF (2014) Direct involvement of the CreA transcription factor in penicillin biosynthesis and expression of the pcbAB gene in Penicillium chrysogenum. Appl Microbiol Biotechnol 98(16):7113–7124. https://doi.org/10.1007/s00253-014-5760-1
Chagas FO, Dias LG, Pupo MT (2013) A mixed culture of endophytic fungi increases production of antifungal polyketides. J Chem Ecol 39(10):1335–1342. https://doi.org/10.1007/s10886-013-0351-7
Chen J, Zhang P, Ye X, Wei B, Emam M, Zhang H, Wang H (2020) The structural diversity of marine microbial secondary metabolites based on co-culture strategy: 2009–2019. Mar Drugs 18(9). https://doi.org/10.3390/md18090449
Christensen SA, Kolomiets MV (2011) The lipid language of plant-fungal interactions. Fungal Genet Biol 48(1):4–14. https://doi.org/10.1016/j.fgb.2010.05.005
Coban O, De Deyn GB, van der Ploeg M (2022) Soil microbiota as game-changers in restoration of degraded lands. Science 375(6584):abe0725. https://doi.org/10.1126/science.abe0725
Combès A, Ndoye I, Bance C, Bruzaud J, Djediat C, Dupont J, Nay B, Prado S (2012) Chemical communication between the endophytic fungus Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum. PLoS One 7(10):e47313. https://doi.org/10.1371/journal.pone.0047313
Conrad T, Kniemeyer O, Henkel SG, Krüger T, Mattern DJ, Valiante V, Guthke R, Jacobsen ID, Brakhage AA, Vlaic S, Linde J (2018) Module-detection approaches for the integration of multilevel omics data highlight the comprehensive response of Aspergillus fumigatus to caspofungin. BMC Syst Biol 12(1):88. https://doi.org/10.1186/s12918-018-0620-8
Couillerot O, Prigent-Combaret C, Caballero-Mellado J, Moënne-Loccoz Y (2009) Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Lett Appl Microbiol 48(5):505–512. https://doi.org/10.1111/j.1472-765X.2009.02566.x
Cueto M, Jensen PR, Kauffman C, Fenical W, Lobkovsky E, Clardy J (2001) Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge. J Nat Prod 64(11):1444–1446. https://doi.org/10.1021/np0102713
Cui CB, Kakeya H, Okada G, Onose R, Ubukata M, Takahashi I, Isono K, Osada H (1995) Tryprostatins A and B, novel mammalian cell cycle inhibitors produced by Aspergillus fumigatus. J Antibiot (Tokyo) 48(11):1382–1384. https://doi.org/10.7164/antibiotics.48.1382
Currie CR (2001) A community of ants, fungi, and bacteria: a multilateral approach to studying symbiosis. Annu Rev Microbiol 55:357–380. https://doi.org/10.1146/annurev.micro.55.1.357
Dalmais B, Schumacher J, Moraga J, Tudzynski B, Collado IG, Viaud M (2011) The Botrytis cinerea phytotoxin botcinic acid requires two polyketide synthases for production and has a redundant role in virulence with botrydial. Mol Plant Pathol 12(6):564–579. https://doi.org/10.1111/j.1364-3703.2010.00692.x
Damer B, Deamer D (2020) The hot spring hypothesis for an origin of life. Astrobiology 20(4):429–452. https://doi.org/10.1089/ast.2019.2045
Dang H, Lovell CR (2016) Microbial surface colonization and biofilm development in marine environments. Microbiol Mol Biol Rev 80(1):91–138. https://doi.org/10.1128/MMBR.00037-15
Davière JM, Achard P (2013) Gibberellin signaling in plants. Development 140 (6):1147–1151. doi:https://doi.org/10.1242/dev.087650.
De Silva NI, Brooks S, Lumyong S, Hyde KD (2019) Use of endophytes as biocontrol agents. Fungal Biol Rev 33(2):133–148. https://doi.org/10.1016/j.fbr.2018.10.001
Dhodary B, Schilg M, Wirth R, Spiteller D (2018) Secondary metabolites from Escovopsis weberi and their role in attacking the garden fungus of leaf-cutting ants. Chemistry 24(17):4445–4452. https://doi.org/10.1002/chem.201706071
Döll K, Chatterjee S, Scheu S, Karlovsky P, Rohlfs M (2013) Fungal metabolic plasticity and sexual development mediate induced resistance to arthropod fungivory. Proc Biol Sci 280(1771):20131219. https://doi.org/10.1098/rspb.2013.1219
Duran R, Cary JW, Calvo AM (2010) Role of the osmotic stress regulatory pathway in morphogenesis and secondary metabolism in filamentous fungi. Toxins (Basel) 2(4):367–381. https://doi.org/10.3390/toxins2040367
Edel-Hermann V, Lecomte C (2019) Current status of Fusarium oxysporum formae speciales and races. Phytopathology 109(4):512–530. https://doi.org/10.1094/PHYTO-08-18-0320-RVW
Ehrlich KC, Cary JW, Montalbano BG (1999) Characterization of the promoter for the gene encoding the aflatoxin biosynthetic pathway regulatory protein AFLR. Biochim Biophys Acta 1444(3):412–417. https://doi.org/10.1016/S0167-4781(99)00022-6
Eisendle M, Oberegger H, Buttinger R, Illmer P, Haas H (2004) Biosynthesis and uptake of siderophores is controlled by the PacC-mediated ambient-pH Regulatory system in Aspergillus nidulans. Eukaryot Cell 3(2):561–563. https://doi.org/10.1128/EC.3.2.561-563.2004
Eley KL, Halo LM, Song Z, Powles H, Cox RJ, Bailey AM, Lazarus CM, Simpson TJ (2007) Biosynthesis of the 2-pyridone tenellin in the insect pathogenic fungus Beauveria bassiana. Chembiochem 8(3):289–297. https://doi.org/10.1002/cbic.200600398
Eshwika A, Kelly J, Fallon JP, Kavanagh K (2013) Exposure of Aspergillus fumigatus to caspofungin results in the release, and de novo biosynthesis, of gliotoxin. Med Mycol 51(2):121–127. https://doi.org/10.3109/13693786.2012.688180
Evidente A, Cimmino A, Masi M (2019) Phytotoxins produced by pathogenic fungi of agrarian plants. Phytochem Rev 18(3):843–870. https://doi.org/10.1007/s11101-019-09624-0
Falsetta ML, Klein MI, Colonne PM, Scott-Anne K, Gregoire S, Pai CH, Gonzalez-Begne M, Watson G, Krysan DJ, Bowen WH, Koo H (2014) Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect Immun 82(5):1968–1981. https://doi.org/10.1128/IAI.00087-14
Fan Y, Liu X, Keyhani NO, Tang G, Pei Y, Zhang W, Tong S (2017) Regulatory cascade and biological activity of Beauveria bassiana oosporein that limits bacterial growth after host death. Proc Natl Acad Sci U S A 114(9):E1578–E1586. https://doi.org/10.1073/pnas.1616543114
Fasoyin OE, Wang B, Qiu M, Han X, Chung KR, Wang S (2018) Carbon catabolite repression gene creA regulates morphology, aflatoxin biosynthesis and virulence in Aspergillus flavus. Fungal Genet Biol 115:41–51. https://doi.org/10.1016/j.fgb.2018.04.008
Feng B, Friedlin E, Marzluf GA (1994) A reporter gene analysis of penicillin biosynthesis gene expression in Penicillium chrysogenum and its regulation by nitrogen and glucose catabolite repression. Appl Environ Microbiol 60(12):4432–4439. https://doi.org/10.1128/aem.60.12.4432-4439.1994
Feng P, Shang Y, Cen K, Wang C (2015) Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. Proc Natl Acad Sci U S A 112(36):11365–11370. https://doi.org/10.1073/pnas.1503200112
Ferrigo D, Raiola A, Bogialli S, Bortolini C, Tapparo A, Causin R (2015) In vitro production of Fumonisins by Fusarium verticillioides under oxidative stress induced by H2O2. J Agric Food Chem 63(19):4879–4885. https://doi.org/10.1021/acs.jafc.5b00113
Fischer J, Müller SY, Netzker T, Jäger N, Gacek-Matthews A, Scherlach K, Stroe MC, García-Altares M, Pezzini F, Schoeler H, Reichelt M, Gershenzon J, Krespach MKC, Shelest E, Schroeckh V, Valiante V, Heinzel T, Hertweck C, Strauss J, Brakhage AA (2018) Chromatin mapping identifies BasR, a key regulator of bacteria-triggered production of fungal secondary metabolites. Elife 7. https://doi.org/10.7554/eLife.40969
Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484(7393):186–194. https://doi.org/10.1038/nature10947
Flaherty JE, Woloshuk CP (2004) Regulation of fumonisin biosynthesis in Fusarium verticillioides by a zinc binuclear cluster-type gene, ZFR1. Appl Environ Microbiol 70(5):2653–2659. https://doi.org/10.1128/AEM.70.5.2653-2659.2004
Fobofou SA, Savidge T (2022) Microbial metabolites: cause or consequence in gastrointestinal disease? Am J Physiol Gastrointest Liver Physiol 322(6):G535–G552. https://doi.org/10.1152/ajpgi.00008.2022
Fung F, Clark RF (2004) Health effects of mycotoxins: a toxicological overview. J Toxicol Clin Toxicol 42(2):217–234. https://doi.org/10.1081/clt-120,030,947
Gibbons JG, Beauvais A, Beau R, McGary KL, Latge JP, Rokas A (2012) Global transcriptome changes underlying colony growth in the opportunistic human pathogen Aspergillus fumigatus. Eukaryot Cell 11(1):68–78. https://doi.org/10.1128/EC.05102-11
Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R (2018) Current understanding of the human microbiome. Nat Med 24(4):392–400. https://doi.org/10.1038/nm.4517
Giuliano Garisto Donzelli B, Gibson DM, Krasnoff SB (2015) Intracellular siderophore but not extracellular siderophore is required for full virulence in Metarhizium robertsii. Fungal Genet Biol 82:56–68. https://doi.org/10.1016/j.fgb.2015.06.008
Graf E, Schmidt-Heydt M, Geisen R (2012) HOG MAP kinase regulation of alternariol biosynthesis in Alternaria alternata is important for substrate colonization. Int J Food Microbiol 157(3):353–359. https://doi.org/10.1016/j.ijfoodmicro.2012.06.004
Grahl N, Shepardson KM, Chung D, Cramer RA (2012) Hypoxia and fungal pathogenesis: to air or not to air? Eukaryot Cell 11(5):560–570. https://doi.org/10.1128/EC.00031-12
Grimaldi DA (2010) 400 million years on six legs: on the origin and early evolution of Hexapoda. Arthropod Struct Dev 39(2–3):191–203. https://doi.org/10.1016/j.asd.2009.10.008
Grintzalis K, Vernardis SI, Klapa MI, Georgiou CD (2014) Role of oxidative stress in Sclerotial differentiation and aflatoxin B1 biosynthesis in Aspergillus flavus. Appl Environ Microbiol 80(18):5561–5571. https://doi.org/10.1128/AEM.01282-14
Guruceaga X, Perez-Cuesta U, Abad-Diaz de Cerio A, Gonzalez O, Alonso RM, Hernando FL, Ramirez-Garcia A, Rementeria A (2019) Fumagillin, a mycotoxin of Aspergillus fumigatus: biosynthesis, biological activities, detection, and applications. Toxins (Basel) 12(1). https://doi.org/10.3390/toxins12010007
Haas H (2014) Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat Prod Rep 31(10):1266–1276. https://doi.org/10.1039/c4np00071d
Haas H, Marzluf GA (1995) NRE, the major nitrogen regulatory protein of Penicillium chrysogenum, binds specifically to elements in the intergenic promoter regions of nitrate assimilation and penicillin biosynthetic gene clusters. Curr Genet 28(2):177–183. https://doi.org/10.1007/BF00315785
Hagag A, Abdelwahab MF, Abd El-Kader AM, Fouad MA (2022) The endophytic Aspergillus strains: a bountiful source of natural products. J Appl Microbiol 132(6):4150–4169. https://doi.org/10.1111/jam.15489
Haiko J, Saeedi B, Bagger G, Karpati F, Özenci V (2019) Coexistence of Candida species and bacteria in patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis 38(6):1071–1077. https://doi.org/10.1007/s10096-019-03493-3
Hasan S, Ansari MI, Ahmad A, Mishra M (2015) Major bioactive metabolites from marine fungi: a review. Bioinformation 11(4):176–181. https://doi.org/10.6026/97320630011176
Heine D, Holmes NA, Worsley SF, Santos ACA, Innocent TM, Scherlach K, Patrick EH, Yu DW, Murrell JC, Vieria PC, Boomsma JJ, Hertweck C, Hutchings MI, Wilkinson B (2018) Chemical warfare between leafcutter ant symbionts and a co-evolved pathogen. Nat Commun 9(1):2208. https://doi.org/10.1038/s41467-018-04520-1
Heinekamp T, Schmidt H, Lapp K, Pähtz V, Shopova I, Köster-Eiserfunke N, Krüger T, Kniemeyer O, Brakhage AA (2015) Interference of Aspergillus fumigatus with the immune response. Semin Immunopathol 37(2):141–152. https://doi.org/10.1007/s00281-014-0465-1
Hissen AH, Wan AN, Warwas ML, Pinto LJ, Moore MM (2005) The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding L-ornithine N5-oxygenase, is required for virulence. Infect Immun 73(9):5493–5503. https://doi.org/10.1128/IAI.73.9.5493-5503.2005
Höfte M, Altier N (2010) Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems. Res Microbiol 161(6):464–471. https://doi.org/10.1016/j.resmic.2010.04.007
Hong SY, Roze LV, Wee J, Linz JE (2013) Evidence that a transcription factor regulatory network coordinates oxidative stress response and secondary metabolism in aspergilli. Microbiologyopen 2(1):144–160. https://doi.org/10.1002/mbo3.63
Hope WW, Walsh TJ, Denning DW (2005) Laboratory diagnosis of invasive aspergillosis. Lancet Infect Dis 5(10):609–622. https://doi.org/10.1016/S1473-3099(05)70238-3
Hridoy M, Gorapi MZH, Noor S, Chowdhury NS, Rahman MM, Muscari I, Masia F, Adorisio S, Delfino DV, Mazid MA (2022) Putative anticancer compounds from plant-derived endophytic fungi: a review. Molecules 27(1). https://doi.org/10.3390/molecules27010296
Hsueh YP, Mahanti P, Schroeder FC, Sternberg PW (2013) Nematode-trapping fungi eavesdrop on nematode pheromones. Curr Biol 23(1):83–86. https://doi.org/10.1016/j.cub.2012.11.035
Hsueh YP, Gronquist MR, Schwarz EM, Nath RD, Lee CH, Gharib S, Schroeder FC, Sternberg PW (2017) Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. Elife 6. https://doi.org/10.7554/eLife.20023
Hu Y, Lian L, Xia J, Hu S, Xu W, Zhu J, Ren A, Shi L, Zhao MW (2020) Influence of PacC on the environmental stress adaptability and cell wall components of Ganoderma lucidum. Microbiol Res 230:126348. https://doi.org/10.1016/j.micres.2019.126348
Humpf HU, Voss KA (2004) Effects of thermal food processing on the chemical structure and toxicity of fumonisin mycotoxins. Mol Nutr Food Res 48(4):255–269. https://doi.org/10.1002/mnfr.200400033
Irankhah S, Chitarra W, Nerva L, Antoniou C, Lumini E, Volpe V, Ganjeali A, Cheniany M, Mashreghi M, Fotopoulos V, Balestrini R (2020) Impact of an arbuscular mycorrhizal fungal inoculum and exogenous MeJA on fenugreek secondary metabolite production under water deficit. Environ Exp Bot 176:104096. https://doi.org/10.1016/j.envexpbot.2020.104096
Irmer H, Tarazona S, Sasse C, Olbermann P, Loeffler J, Krappmann S, Conesa A, Braus GH (2015) RNAseq analysis of Aspergillus fumigatus in blood reveals a just wait and see resting stage behavior. BMC Genomics 16:640. https://doi.org/10.1186/s12864-015-1853-1
Ishikawa M, Ninomiya T, Akabane H, Kushida N, Tsujiuchi G, Ohyama M, Gomi S, Shito K, Murata T (2009) Pseurotin A and its analogues as inhibitors of immunoglobulin E [correction of immunoglobuline E] production. Bioorg Med Chem Lett 19(5):1457–1460. https://doi.org/10.1016/j.bmcl.2009.01.029
Islam MR, Jeong YT, Lee YS, Song CH (2012) Isolation and identification of antifungal compounds from Bacillus subtilis C9 inhibiting the growth of plant pathogenic fungi. Mycobiology 40(1):59–66. https://doi.org/10.5941/MYCO.2012.40.1.059
Jakubczyk D, Dussart F (2020) Selected fungal natural products with antimicrobial properties. Molecules 25(4). https://doi.org/10.3390/molecules25040911
Kardos N, Demain AL (2011) Penicillin: the medicine with the greatest impact on therapeutic outcomes. Appl Microbiol Biotechnol 92(4):677–687. https://doi.org/10.1007/s00253-011-3587-6
Kataoka S, Furutani S, Hirata K, Hayashi H, Matsuda K (2011) Three austin family compounds from Penicillium brasilianum exhibit selective blocking action on cockroach nicotinic acetylcholine receptors. Neurotoxicology 32(1):123–129. https://doi.org/10.1016/j.neuro.2010.10.003
Keller NP (2019) Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol 17(3):167–180. https://doi.org/10.1038/s41579-018-0121-1
Kenne GJ, Gummadidala PM, Omebeyinje MH, Mondal AM, Bett DK, McFadden S, Bromfield S, Banaszek N, Velez-Martinez M, Mitra C, Mikell I, Chatterjee S, Wee J, Chanda A (2018) Activation of aflatoxin biosynthesis alleviates total ROS in Aspergillus parasiticus. Toxins (Basel) 10(2). https://doi.org/10.3390/toxins10020057
Kerr JR, Taylor GW, Rutman A, Hoiby N, Cole PJ, Wilson R (1999) Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. J Clin Pathol 52(5):385–387. https://doi.org/10.1136/jcp.52.5.385
Khalid S, Keller NP (2021) Chemical signals driving bacterial-fungal interactions. Environ Microbiol 23(3):1334–1347. https://doi.org/10.1111/1462-2920.15410
Khalid S, Baccile JA, Spraker JE, Tannous J, Imran M, Schroeder FC, Keller NP (2018) NRPS-derived isoquinolines and lipopetides mediate antagonism between plant pathogenic fungi and bacteria. ACS Chem Biol 13(1):171–179. https://doi.org/10.1021/acschembio.7b00731
Khare E, Mishra J, Arora NK (2018) Multifaceted interactions between endophytes and plant: developments and prospects. Front Microbiol 9:2732. https://doi.org/10.3389/fmicb.2018.02732
Kim D, Sengupta A, Niepa TH, Lee BH, Weljie A, Freitas-Blanco VS, Murata RM, Stebe KJ, Lee D, Koo H (2017) Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites. Sci Rep 7:41332. https://doi.org/10.1038/srep41332
Knowles SL, Raja HA, Roberts CD, Oberlies NH (2022) Fungal–fungal co-culture: a primer for generating chemical diversity. Nat Prod Rep. https://doi.org/10.1039/D1NP00070E
Kobayashi A, Hagihara K, Kajiyama S, Kanzaki H, Kawazu K (1995) Antifungal compounds induced in the dual culture with Phytolacca americana callus and Botrytis fabae. Z Naturforsch C J Biosci 50(5–6):398–402. https://doi.org/10.1515/znc-1995-5-610
Komagata D, Fujita S, Yamashita N, Saito S, Morino T (1996) Novel neuritogenic activities of pseurotin A and penicillic acid. J Antibiot (Tokyo) 49(9):958–959. https://doi.org/10.7164/antibiotics.49.958
König CC, Scherlach K, Schroeckh V, Horn F, Nietzsche S, Brakhage AA, Hertweck C (2013) Bacterium induces cryptic meroterpenoid pathway in the pathogenic fungus Aspergillus fumigatus. Chembiochem 14(8):938–942. https://doi.org/10.1002/cbic.201300070
Krespach MKC, Stroe MC, Flak M, Komor AJ, Nietzsche S, Sasso S, Hertweck C, Brakhage AA (2021) Bacterial marginolactones trigger formation of algal gloeocapsoids, protective aggregates on the verge of multicellularity. Proc Natl Acad Sci U S A 118(45). https://doi.org/10.1073/pnas.2100892118
Krespach MKC, Stroe MC, Netzker T, Rosin M, Zehner LM, Komor AJ, Beilmann JM, Krüger T, Scherlach K, Kniemeyer O, Schroeckh V, Hertweck C, Brakhage AA (2023) Streptomyces polyketides mediate bacteria-fungi interactions across soil environments. Nat Microbiol. Accepted. https://doi.org/10.1038/s41564-023-01382-2
Krüger W, Vielreicher S, Kapitan M, Jacobsen ID, Niemiec MJ (2019) Fungal-bacterial interactions in health and disease. Pathogens 8(2). https://doi.org/10.3390/pathogens8020070
Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38(2):143–158. https://doi.org/10.1016/S1087-1845(02)00526-1
Li C, Yang R, Lin Y, Zhou S (2006) Isolation and crystal structure of (−)-byssochlamic acid from mangrove fungus (strain no. k38). Chem Nat Compd 42(3):290–293. https://doi.org/10.1007/s10600-006-0101-y
Li CY, Yang RY, Lin YC, She ZG, Zhou SN (2007) A new nonadride derivative from mangrove fungus (strain no. k38). J Asian Nat Prod Res 9(3–5):285–291. https://doi.org/10.1080/10286020600727418
Li C, Ding W, She Z, Lin Y (2008) A new biphenyl derivative from an unidentified marine fungus E33. Chem Nat Compd 44(2):163–165. https://doi.org/10.1007/s10600-008-9003-5
Li B, Lai T, Qin G, Tian S (2010a) Ambient pH stress inhibits spore germination of Penicillium expansum by impairing protein synthesis and folding: a proteomic-based study. J Proteome Res 9(1):298–307. https://doi.org/10.1021/pr900622j
Li CY, Ding WJ, Shao CL, She ZG, Lin YC (2010b) A new diimide derivative from the co-culture broth of two mangrove fungi (strain no. E33 and K38). J Asian Nat Prod Res 12(9):809–813. https://doi.org/10.1080/10286020.2010.497757
Li C, Zhang J, Shao C, Ding W, She Z, Lin Y (2011) A new xanthone derivative from the co-culture broth of two marine fungi (strain no. E33 and K38). Chem Nat Compd 47(3):382. https://doi.org/10.1007/s10600-011-9939-8
Li H, Liu L, Zhang S, Cui W, Lv J (2012) Identification of antifungal compounds produced by Lactobacillus casei AST18. Curr Microbiol 65(2):156–161. https://doi.org/10.1007/s00284-012-0135-2
Li C, Wang J, Luo C, Ding W, Cox DG (2014) A new cyclopeptide with antifungal activity from the co-culture broth of two marine mangrove fungi. Nat Prod Res 28(9):616–621. https://doi.org/10.1080/14786419.2014.887074
Li Y, Huang Z, Petropoulos E, Ma Y, Shen Y (2020) Humidity governs the wall-inhabiting fungal community composition in a 1600-year tomb of Emperor Yang. Sci Rep 10(1):8421. https://doi.org/10.1038/s41598-020-65,478-z
Li B, Chen Y, Tian S (2021a) Function of pH-dependent transcription factor PacC in regulating development, pathogenicity, and mycotoxin biosynthesis of phytopathogenic fungi. FEBS J. https://doi.org/10.1111/febs.15808
Li T, Su X, Qu H, Duan X, Jiang Y (2021b) Biosynthesis, regulation, and biological significance of fumonisins in fungi: current status and prospects. Crit Rev Microbiol 48:450–462. https://doi.org/10.1080/1040841X.2021.1979465
Lim S, Bijlani S, Blachowicz A, Chiang YM, Lee MS, Torok T, Venkateswaran K, Wang CCC (2021) Identification of the pigment and its role in UV resistance in Paecilomyces variotii, a Chernobyl isolate, using genetic manipulation strategies. Fungal Genet Biol 152:103567. https://doi.org/10.1016/j.fgb.2021.103567
Lind AL, Smith TD, Saterlee T, Calvo AM, Rokas A (2016) Regulation of secondary metabolism by the velvet complex is temperature-responsive in Aspergillus. G3 (Bethesda) 6(12):4023–4033. https://doi.org/10.1534/g3.116.033084
Liu BL, Tzeng YM (2012) Development and applications of destruxins: a review. Biotechnol Adv 30(6):1242–1254. https://doi.org/10.1016/j.biotechadv.2011.10.006
Liu Z, Frank M, Yu X, Yu H, Tran-Cong NM, Gao Y, Proksch P (2020) Secondary metabolites from marine-derived fungi from China. Prog Chem Org Nat Prod 111:81–153. https://doi.org/10.1007/978-3-030-37,865-3_2
Lobo LS, Luz C, Fernandes EK, Juarez MP, Pedrini N (2015) Assessing gene expression during pathogenesis: use of qRT-PCR to follow toxin production in the entomopathogenic fungus Beauveria bassiana during infection and immune response of the insect host Triatoma infestans. J Invertebr Pathol 128:14–21. https://doi.org/10.1016/j.jip.2015.04.004
Lokhandwala J, Hopkins HC, Rodriguez-Iglesias A, Dattenböck C, Schmoll M, Zoltowski BD (2015) Structural biochemistry of a fungal LOV domain photoreceptor reveals an evolutionarily conserved pathway integrating light and oxidative stress. Structure 23(1):116–125. https://doi.org/10.1016/j.str.2014.10.020
Loreto F, Dicke M, Schnitzler JP, Turlings TC (2014) Plant volatiles and the environment. Plant Cell Environ 37(8):1905–1908. https://doi.org/10.1111/pce.12369
Luo ZX, Yuan CX, Meng QJ, Ji Q (2011) A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476(7361):442–445. https://doi.org/10.1038/nature10291
Lutz MP, Wenger S, Maurhofer M, Defago G, Duffy B (2004) Signaling between bacterial and fungal biocontrol agents in a strain mixture. FEMS Microbiol Ecol 48(3):447–455. https://doi.org/10.1016/j.femsec.2004.03.002
Lutzoni F, Nowak MD, Alfaro ME, Reeb V, Miadlikowska J, Krug M, Arnold AE, Lewis LA, Swofford DL, Hibbett D, Hilu K, James TY, Quandt D, Magallón S (2018) Contemporaneous radiations of fungi and plants linked to symbiosis. Nat Commun 9(1):5451. https://doi.org/10.1038/s41467-018-07849-9
Macauley BJ, Thrower LB (1966) Succession of fungi in leaf litter of Eucalyptus regnans. Trans Br Mycol Soc 49(3):509–520. https://doi.org/10.1016/S0007-1536(66)80097-9
Macheleidt J, Mattern DJ, Fischer J, Netzker T, Weber J, Schroeckh V, Valiante V, Brakhage AA (2016) Regulation and role of fungal secondary metabolites. Annu Rev Genet 50:371–392. https://doi.org/10.1146/annurev-genet-120,215-035203
Mandelare PE, Adpressa DA, Kaweesa EN, Zakharov LN, Loesgen S (2018) Coculture of two developmental stages of a marine-derived Aspergillus alliaceus results in the production of the cytotoxic Bianthrone Allianthrone A. J Nat Prod 81(4):1014–1022. https://doi.org/10.1021/acs.jnatprod.8b00024
Marfori EC, Kajiyama S, Fukusaki E, Kobayashi A (2002) Trichosetin, a novel tetramic acid antibiotic produced in dual culture of Trichoderma harzianum and Catharanthus roseus Callus. Z Naturforsch C J Biosci 57(5–6):465–470. https://doi.org/10.1515/znc-2002-5-611
Martin JF (2000) Molecular control of expression of penicillin biosynthesis genes in fungi: regulatory proteins interact with a bidirectional promoter region. J Bacteriol 182(9):2355–2362. https://doi.org/10.1128/JB.182.9.2355-2362.2000
Mattern DJ, Valiante V, Unkles SE, Brakhage AA (2015) Synthetic biology of fungal natural products. Front Microbiol 6:775. https://doi.org/10.3389/fmicb.2015.00775
McCormack PL, Perry CM (2005) Caspofungin: a review of its use in the treatment of fungal infections. Drugs 65(14):2049–2068. https://doi.org/10.2165/00003495-200,565,140-00009
McDonagh A, Fedorova ND, Crabtree J, Yu Y, Kim S, Chen D, Loss O, Cairns T, Goldman G, Armstrong-James D, Haynes K, Haas H, Schrettl M, May G, Nierman WC, Bignell E (2008) Sub-telomere directed gene expression during initiation of invasive aspergillosis. PLoS Pathog 4(9):e1000154. https://doi.org/10.1371/journal.ppat.1000154
Medina A, Schmidt-Heydt M, Rodríguez A, Parra R, Geisen R, Magan N (2015) Impacts of environmental stress on growth, secondary metabolite biosynthetic gene clusters and metabolite production of xerotolerant/xerophilic fungi. Curr Genet 61(3):325–334. https://doi.org/10.1007/s00294-014-0455-9
Mendelson M, Sharland M, Mpundu M (2022) Antibiotic resistance: calling time on the ‘silent pandemic’. JAC Antimicrob Resist 4(2):dlac016. https://doi.org/10.1093/jacamr/dlac016
Milshteyn A, Colosimo DA, Brady SF (2018) Accessing bioactive natural products from the human microbiome. Cell Host Microbe 23(6):725–736. https://doi.org/10.1016/j.chom.2018.05.013
Minerdi D, Maggini V, Fani R (2021) Volatile organic compounds: from figurants to leading actors in fungal symbiosis. FEMS Microbiol Ecol 97(5). https://doi.org/10.1093/femsec/fiab067
Misslinger M, Hortschansky P, Brakhage AA, Haas H (2021) Fungal iron homeostasis with a focus on Aspergillus fumigatus. Biochim Biophys Acta Mol Cell Res 1868(1):118885. https://doi.org/10.1016/j.bbamcr.2020.118885
Mona SA, Hashem A, Abd-Allah EF, Alqarawi AA, DWK S, Wirth S, Egamberdieva D (2017) Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. J Integr Agric 16(8):1751–1757. https://doi.org/10.1016/S2095-3119(17)61695-2
Monroy AA, Stappler E, Schuster A, Sulyok M, Schmoll M (2017) A CRE1-regulated cluster is responsible for light dependent production of dihydrotrichotetronin in Trichoderma reesei. PLoS One 12(8):e0182530. https://doi.org/10.1371/journal.pone.0182530
Morales DK, Jacobs NJ, Rajamani S, Krishnamurthy M, Cubillos-Ruiz JR, Hogan DA (2010) Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills Candida albicans in biofilms. Mol Microbiol 78(6):1379–1392. https://doi.org/10.1111/j.1365-2958.2010.07414.x
Moree WJ, Phelan VV, Wu CH, Bandeira N, Cornett DS, Duggan BM, Dorrestein PC (2012) Interkingdom metabolic transformations captured by microbial imaging mass spectrometry. Proc Natl Acad Sci U S A 109(34):13811–13816. https://doi.org/10.1073/pnas.1206855109
Munkvold GP, Hellmich RL, Rice LG (1999) Comparison of Fumonisin concentrations in kernels of transgenic Bt maize hybrids and nontransgenic hybrids. Plant Dis 83(2):130–138. https://doi.org/10.1094/PDIS.1999.83.2.130
Narsing Rao MP, Xiao M, Li WJ (2017) Fungal and bacterial pigments: secondary metabolites with wide applications. Front Microbiol 8:1113. https://doi.org/10.3389/fmicb.2017.01113
Neilands JB (1952) A crystalline organo-iron pigment from a rust fungus (Ustilago sphaerogena)1. J Am Chem Soc 74(19):4846–4847. https://doi.org/10.1021/ja01139a033
Netzker T, Fischer J, Weber J, Mattern DJ, König CC, Valiante V, Schroeckh V, Brakhage AA (2015) Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol 6:299. https://doi.org/10.3389/fmicb.2015.00299
Netzker T, Flak M, Krespach MK, Stroe MC, Weber J, Schroeckh V, Brakhage AA (2018) Microbial interactions trigger the production of antibiotics. Curr Opin Microbiol 45:117–123. https://doi.org/10.1016/j.mib.2018.04.002
Netzker T, Shepherdson EMF, Zambri MP, Elliot MA (2020) Bacterial volatile compounds: functions in communication, cooperation, and competition. Annu Rev Microbiol 74:409–430. https://doi.org/10.1146/annurev-micro-011320-015542
Nielsen ML, Nielsen JB, Rank C, Klejnstrup ML, Holm DK, Brogaard KH, Hansen BG, Frisvad JC, Larsen TO, Mortensen UH (2011) A genome-wide polyketide synthase deletion library uncovers novel genetic links to polyketides and meroterpenoids in Aspergillus nidulans. FEMS Microbiol Lett 321(2):157–166. https://doi.org/10.1111/j.1574-6968.2011.02327.x
Nielsen MT, Klejnstrup ML, Rohlfs M, Anyaogu DC, Nielsen JB, Gotfredsen CH, Andersen MR, Hansen BG, Mortensen UH, Larsen TO (2013) Aspergillus nidulans synthesize insect juvenile hormones upon expression of a heterologous regulatory protein and in response to grazing by Drosophila melanogaster larvae. PLoS One 8(8):e73369. https://doi.org/10.1371/journal.pone.0073369
Ninkovic V, Markovic D, Rensing M (2021) Plant volatiles as cues and signals in plant communication. Plant Cell Environ 44(4):1030–1043. https://doi.org/10.1111/pce.13910
Ninomiya A, Urayama SI, Hagiwara D (2022) Antibacterial diphenyl ether production induced by co-culture of Aspergillus nidulans and Aspergillus fumigatus. Appl Microbiol Biotechnol 106(11):4169–4185. https://doi.org/10.1007/s00253-022-11,964-5
Niu X-M, Zhang K-Q (2011) Arthrobotrys oligospora: a model organism for understanding the interaction between fungi and nematodes. Mycology 2(2):59–78. https://doi.org/10.1080/21501203.2011.562559
Nützmann HW, Reyes-Dominguez Y, Scherlach K, Schroeckh V, Horn F, Gacek A, Schumann J, Hertweck C, Strauss J, Brakhage AA (2011) Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc Natl Acad Sci U S A 108(34):14282–14287. https://doi.org/10.1073/pnas.1103523108
Nützmann HW, Fischer J, Scherlach K, Hertweck C, Brakhage AA (2013) Distinct amino acids of histone H3 control secondary metabolism in Aspergillus nidulans. Appl Environ Microbiol 79(19):6102–6109. https://doi.org/10.1128/AEM.01578-13
Oberegger H, Schoeser M, Zadra I, Abt B, Haas H (2001) SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in Aspergillus nidulans. Mol Microbiol 41(5):1077–1089. https://doi.org/10.1046/j.1365-2958.2001.02586.x
Oh DC, Jensen PR, Kauffman CA, Fenical W (2005) Libertellenones A-D: induction of cytotoxic diterpenoid biosynthesis by marine microbial competition. Bioorg Med Chem 13(17):5267–5273. https://doi.org/10.1016/j.bmc.2005.05.068
Oh DC, Kauffman CA, Jensen PR, Fenical W (2007) Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J Nat Prod 70(4):515–520. https://doi.org/10.1021/np060381f
Ola AR, Thomy D, Lai D, Brotz-Oesterhelt H, Proksch P (2013) Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. J Nat Prod 76(11):2094–2099. https://doi.org/10.1021/np400589h
Oppong-Danquah E, Budnicka P, Blümel M, Tasdemir D (2020) Design of fungal co-cultivation based on comparative metabolomics and bioactivity for discovery of marine fungal agrochemicals. Mar Drugs 18(2). https://doi.org/10.3390/md18020073
Osinski GR, Cockell CS, Pontefract A, Sapers HM (2020) The role of meteorite impacts in the origin of life. Astrobiology 20(9):1121–1149. https://doi.org/10.1089/ast.2019.2203
Overy DP, Frisvad JC, Steinmeier U, Thrane U (2005) Clarification of the agents causing blue mold storage rot upon various flower and vegetable bulbs: implications for mycotoxin contamination. Postharvest Biol Technol 35(2):217–221. https://doi.org/10.1016/j.postharvbio.2004.08.001
Overy DP, Smedsgaard J, Frisvad JC, Phipps RK, Thrane U (2006) Host-derived media used as a predictor for low abundant, in planta metabolite production from necrotrophic fungi. J Appl Microbiol 101(6):1292–1300. https://doi.org/10.1111/j.1365-2672.2006.03037.x
Overy D, Correa H, Roullier C, Chi WC, Pang KL, Rateb M, Ebel R, Shang Z, Capon R, Bills G, Kerr R (2017) Does osmotic stress affect natural product expression in fungi? Mar Drugs 15(8). https://doi.org/10.3390/md15080254
Ozcengiz G, Demain AL (2013) Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation. Biotechnol Adv 31(2):287–311. https://doi.org/10.1016/j.biotechadv.2012.12.001
Park SH, Kim D, Kim J, Moon Y (2015) Effects of Mycotoxins on mucosal microbial infection and related pathogenesis. Toxins (Basel) 7(11):4484–4502. https://doi.org/10.3390/toxins7114484
Pecoraro L, Wang X, Shah D, Song X, Kumar V, Shakoor A, Tripathi K, Ramteke PW, Rani R (2021) Biosynthesis pathways, transport mechanisms and biotechnological applications of fungal siderophores. J Fungi (Basel) 8(1). https://doi.org/10.3390/jof8010021
Peleg AY, Hogan DA, Mylonakis E (2010) Medically important bacterial-fungal interactions. Nat Rev Microbiol 8(5):340–349. https://doi.org/10.1038/nrmicro2313
Pérez JC (2021) The interplay between gut bacteria and the yeast Candida albicans. Gut Microbes 13(1):1979877. https://doi.org/10.1080/19490976.2021.1979877
Picot A, Barreau C, Pinson-Gadais L, Piraux F, Caron D, Lannou C, Richard-Forget F (2011) The dent stage of maize kernels is the most conducive for fumonisin biosynthesis under field conditions. Appl Environ Microbiol 77(23):8382–8390. https://doi.org/10.1128/AEM.05216-11
Pruss S, Fetzner R, Seither K, Herr A, Pfeiffer E, Metzler M, Lawrence CB, Fischer R (2014) Role of the Alternaria alternata blue-light receptor LreA (white-collar 1) in spore formation and secondary metabolism. Appl Environ Microbiol 80(8):2582–2591. https://doi.org/10.1128/AEM.00327-14
Pultar F, Hansen ME, Wolfrum S, Böselt L, Fróis-Martins R, Bloch S, Kravina AG, Pehlivanoglu D, Schäffer C, LeibundGut-Landmann S, Riniker S, Carreira EM (2021) Mutanobactin D from the human microbiome: total synthesis, configurational assignment, and biological evaluation. J Am Chem Soc 143(27):10389–10402. https://doi.org/10.1021/jacs.1c04825
Raffa N, Keller NP (2019) A call to arms: Mustering secondary metabolites for success and survival of an opportunistic pathogen. PLoS Pathog 15(4):e1007606. https://doi.org/10.1371/journal.ppat.1007606
Rangel LI, Hamilton O, de Jonge R, Bolton MD (2021) Fungal social influencers: secondary metabolites as a platform for shaping the plant-associated community. Plant J 108(3):632–645. https://doi.org/10.1111/tpj.15490
Rascle C, Dieryckx C, Dupuy JW, Muszkieta L, Souibgui E, Droux M, Bruel C, Girard V, Poussereau N (2018) The pH regulator PacC: a host-dependent virulence factor in Botrytis cinerea. Environ Microbiol Rep 10(5):555–568. https://doi.org/10.1111/1758-2229.12663
Reece E, Bettio PHA, Renwick J (2021) Polymicrobial interactions in the cystic fibrosis airway microbiome impact the antimicrobial susceptibility of Pseudomonas aeruginosa. Antibiotics (Basel) 10(7). https://doi.org/10.3390/antibiotics10070827
Reeves EP, Murphy T, Daly P, Kavanagh K (2004) Amphotericin B enhances the synthesis and release of the immunosuppressive agent gliotoxin from the pulmonary pathogen Aspergillus fumigatus. J Med Microbiol 53(Pt 8):719–725. https://doi.org/10.1099/jmm.0.45626-0
Richard JL (2007) Some major mycotoxins and their mycotoxicoses: an overview. Int J Food Microbiol 119(1–2):3–10. https://doi.org/10.1016/j.ijfoodmicro.2007.07.019
Riley RT, Voss KA, Yool HS, Gelderblom WCA, Merrill AH Jr (1994) Mechanism of fumonisin toxicity and carcinogenesis. J Food Prot 57(6):528–535. https://doi.org/10.4315/0362-028X-57.6.528
Rohlfs M, Churchill AC (2011) Fungal secondary metabolites as modulators of interactions with insects and other arthropods. Fungal Genet Biol 48(1):23–34. https://doi.org/10.1016/j.fgb.2010.08.008
Russell M (2006) First life: billions of years ago, deep under the ocean, the pores and pockets in minerals that surrounded warm, alkaline springs catalyzed the beginning of life. Am Sci 94(1):32–39
Rybakova D, Rack-Wetzlinger U, Cernava T, Schaefer A, Schmuck M, Berg G (2017) Aerial warfare: a volatile dialogue between the plant pathogen Verticillium longisporum and Its Antagonist Paenibacillus polymyxa. Front Plant Sci 8:1294. https://doi.org/10.3389/fpls.2017.01294
Sanchez JF, Somoza AD, Keller NP, Wang CC (2012) Advances in Aspergillus secondary metabolite research in the post-genomic era. Nat Prod Rep 29(3):351–371. https://doi.org/10.1039/c2np00084a
Sandmann G (2022) Carotenoids and their biosynthesis in fungi. Molecules 27(4). https://doi.org/10.3390/molecules27041431
Sbaraini N, Guedes RL, Andreis FC, Junges A, de Morais GL, Vainstein MH, de Vasconcelos AT, Schrank A (2016) Secondary metabolite gene clusters in the entomopathogen fungus Metarhizium anisopliae: genome identification and patterns of expression in a cuticle infection model. BMC Genomics 17(Suppl 8):736. https://doi.org/10.1186/s12864-016-3067-6
Scharf DH, Heinekamp T, Brakhage AA (2014) Human and plant fungal pathogens: the role of secondary metabolites. PLoS Pathog 10(1):e1003859. https://doi.org/10.1371/journal.ppat.1003859
Scharf DH, Brakhage AA, Mukherjee PK (2016) Gliotoxin--bane or boon? Environ Microbiol 18(4):1096–1109. https://doi.org/10.1111/1462-2920.13080
Schmeda-Hirschmann G, Hormazabal E, Rodriguez JA, Theoduloz C (2008) Cycloaspeptide A and pseurotin A from the endophytic fungus Penicillium janczewskii. Z Naturforsch C J Biosci 63(5–6):383–388. https://doi.org/10.1515/znc-2008-5-612
Schmidt H, Vlaic S, Krüger T, Schmidt F, Balkenhol J, Dandekar T, Guthke R, Kniemeyer O, Heinekamp T, Brakhage AA (2018) Proteomics of Aspergillus fumigatus conidia-containing phagolysosomes identifies processes governing immune evasion. Mol Cell Proteomics 17(6):1084–1096. https://doi.org/10.1074/mcp.RA117.000069
Schmidt-Heydt M, Graf E, Stoll D, Geisen R (2012) The biosynthesis of ochratoxin A by Penicillium as one mechanism for adaptation to NaCl rich foods. Food Microbiol 29(2):233–241. https://doi.org/10.1016/j.fm.2011.08.003
Schrettl M, Bignell E, Kragl C, Joechl C, Rogers T, Arst HN Jr, Haynes K, Haas H (2004) Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J Exp Med 200(9):1213–1219. https://doi.org/10.1084/jem.20041242
Schroeckh V, Scherlach K, Nützmann HW, Shelest E, Schmidt-Heck W, Schuemann J, Martin K, Hertweck C, Brakhage AA (2009) Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci U S A 106(34):14558–14563. https://doi.org/10.1073/pnas.0901870106
Schulz-Bohm K, Martin-Sanchez L, Garbeva P (2017) Microbial volatiles: small molecules with an important role in intra- and inter-kingdom interactions. Front Microbiol 8:2484. https://doi.org/10.3389/fmicb.2017.02484
Scott J, Sueiro-Olivares M, Ahmed W, Heddergott C, Zhao C, Thomas R, Bromley M, Latgé JP, Krappmann S, Fowler S, Bignell E, Amich J (2019) Pseudomonas aeruginosa-derived volatile sulfur compounds promote distal Aspergillus fumigatus growth and a synergistic pathogen-pathogen interaction that increases pathogenicity in co-infection. Front Microbiol 10:2311. https://doi.org/10.3389/fmicb.2019.02311
Selvig K, Alspaugh JA (2011) pH response pathways in fungi: adapting to host-derived and environmental signals. Mycobiology 39(4):249–256. https://doi.org/10.5941/MYCO.2011.39.4.249
Shang Z, Salim AA, Capon RJ (2017) Chaunopyran A: co-cultivation of marine mollusk-derived fungi activates a rare class of 2-alkenyl-tetrahydropyran. J Nat Prod 80(4):1167–1172. https://doi.org/10.1021/acs.jnatprod.7b00144
Shen L, Porée FH, Gaslonde T, Lalucque H, Chapeland-Leclerc F, Ruprich-Robert G (2019) Functional characterization of the sterigmatocystin secondary metabolite gene cluster in the filamentous fungus Podospora anserina: involvement in oxidative stress response, sexual development, pigmentation and interspecific competitions. Environ Microbiol 21(8):3011–3026. https://doi.org/10.1111/1462-2920.14698
Shen L, Chapeland-Leclerc F, Ruprich-Robert G, Chen Q, Chen S, Adnan M, Wang J, Liu G, Xie N (2022) Involvement of VIVID in white light-responsive pigmentation, sexual development and sterigmatocystin biosynthesis in the filamentous fungus Podospora anserina. Environ Microbiol 24(7):2907–2923. https://doi.org/10.1111/1462-2920.15978
Sheteiwy MS, Ali DFI, Xiong YC, Brestic M, Skalicky M, Hamoud YA, Ulhassan Z, Shaghaleh H, AbdElgawad H, Farooq M, Sharma A, El-Sawah AM (2021) Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC Plant Biol 21(1):195. https://doi.org/10.1186/s12870-021-02949-z
Singh M, Kumar A, Singh R, Pandey KD (2017) Endophytic bacteria: a new source of bioactive compounds. 3 Biotech 7(5):315. https://doi.org/10.1007/s13205-017-0942-z
Sood M, Kapoor D, Kumar V, Sheteiwy MS, Ramakrishnan M, Landi M, Araniti F, Sharma A (2020) Trichoderma: the “secrets” of a multitalented biocontrol agent. Plants (Basel) 9(6). https://doi.org/10.3390/plants9060762
Spraker JE, Jewell K, Roze LV, Scherf J, Ndagano D, Beaudry R, Linz JE, Allen C, Keller NP (2014) A volatile relationship: profiling an inter-kingdom dialogue between two plant pathogens, Ralstonia Solanacearum and Aspergillus Flavus. J Chem Ecol 40(5):502–513. https://doi.org/10.1007/s10886-014-0432-2
Spraker JE, Wiemann P, Baccile JA, Venkatesh N, Schumacher J, Schroeder FC, Sanchez LM, Keller NP (2018) Conserved responses in a war of small molecules between a plant-pathogenic bacterium and fungi. mBio 9(3). https://doi.org/10.1128/mBio.00820-18
Stergiopoulos I, de Wit PJ (2009) Fungal effector proteins. Annu Rev Phytopathol 47:233–263. https://doi.org/10.1146/annurev.phyto.112408.132637
Stierle AA, Stierle DB, Decato D, Priestley ND, Alverson JB, Hoody J, McGrath K, Klepacki D (2017) The berkeleylactones, antibiotic macrolides from fungal coculture. J Nat Prod 80(4):1150–1160. https://doi.org/10.1021/acs.jnatprod.7b00133
Stötefeld L, Scheu S, Rohlfs M (2012) Fungal chemical defence alters density-dependent foraging behaviour and success in a fungivorous soil arthropod. Ecol Entomol 37:323–329. https://doi.org/10.1111/j.1365-2311.2012.01373.x
Stroe MC, Netzker T, Scherlach K, Kruger T, Hertweck C, Valiante V, Brakhage AA (2020) Targeted induction of a silent fungal gene cluster encoding the bacteria-specific germination inhibitor fumigermin. Elife 9. https://doi.org/10.7554/eLife.52541
Sueiro-Olivares M, Fernandez-Molina JV, Abad-Diaz-de-Cerio A, Gorospe E, Pascual E, Guruceaga X, Ramirez-Garcia A, Garaizar J, Hernando FL, Margareto J, Rementeria A (2015) Aspergillus fumigatus transcriptome response to a higher temperature during the earliest steps of germination monitored using a new customized expression microarray. Microbiology (Reading) 161(Pt 3):490–502. https://doi.org/10.1099/mic.0.000021
Sun W, Yu Y, Chen J, Yu B, Chen T, Ying H, Zhou S, Ouyang P, Liu D, Chen Y (2021) Light signaling regulates Aspergillus niger biofilm formation by affecting melanin and extracellular polysaccharide biosynthesis. mBio 12(1). https://doi.org/10.1128/mBio.03434-20
Tisch D, Schmoll M (2010) Light regulation of metabolic pathways in fungi. Appl Microbiol Biotechnol 85(5):1259–1277. https://doi.org/10.1007/s00253-009-2320-1
Tudzynski B (2014) Nitrogen regulation of fungal secondary metabolism in fungi. Front Microbiol 5:656. https://doi.org/10.3389/fmicb.2014.00656
Uma Devi K, Padmavathi J, Uma Maheswara Rao C, Khan AAP, Mohan MC (2008) A study of host specificity in the entomopathogenic fungus Beauveria bassiana (Hypocreales, Clavicipitaceae). Biocontrol Sci Technol 18(10):975–989. https://doi.org/10.1080/09583150802450451
Valiante V, Mattern DJ, Schuffler A, Horn F, Walther G, Scherlach K, Petzke L, Dickhaut J, Guthke R, Hertweck C, Nett M, Thines E, Brakhage AA (2017) Discovery of an extended austinoid biosynthetic pathway in Aspergillus calidoustus. ACS Chem Biol 12(5):1227–1234. https://doi.org/10.1021/acschembio.7b00003
van Tilburg Bernardes E, Pettersen VK, Gutierrez MW, Laforest-Lapointe I, Jendzjowsky NG, Cavin J-B, Vicentini FA, Keenan CM, Ramay HR, Samara J, MacNaughton WK, Wilson RJA, Kelly MM, McCoy KD, Sharkey KA, Arrieta M-C (2020) Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nat Commun 11(1):2577. https://doi.org/10.1038/s41467-020-16,431-1
Venkatesh N, Keller NP (2019) Mycotoxins in conversation with bacteria and fungi. Front Microbiol 10:403. https://doi.org/10.3389/fmicb.2019.00403
Vödisch M, Scherlach K, Winkler R, Hertweck C, Braun HP, Roth M, Haas H, Werner ER, Brakhage AA, Kniemeyer O (2011) Analysis of the Aspergillus fumigatus proteome reveals metabolic changes and the activation of the pseurotin A biosynthesis gene cluster in response to hypoxia. J Proteome Res 10(5):2508–2524. https://doi.org/10.1021/pr1012812
Walton JD (2006) HC-toxin. Phytochemistry 67(14):1406–1413. https://doi.org/10.1016/j.phytochem.2006.05.033
Wang J, Ding W, Li C, Huang S, She Z, Lin Y (2013) A new polysubstituted benzaldehyde from the co-culture broth of two marine fungi (strains nos. E33 and K38). Chem Nat Compd 49(5):799–802. https://doi.org/10.1007/s10600-013-0751-5
Wenke J, Anke H, Sterner O (1993) Pseurotin A and 8-O-Demethylpseurotin A from Aspergillus fumigatus and their inhibitory activities on chitin synthase. Biosci Biotechnol Biochem 57(6):961–964. https://doi.org/10.1271/bbb.57.961
Westrick NM, Ranjan A, Jain S, Grau CR, Smith DL, Kabbage M (2019) Gene regulation of Sclerotinia sclerotiorum during infection of Glycine max: on the road to pathogenesis. BMC Genomics 20(1):157. https://doi.org/10.1186/s12864-019-5517-4
Wild CP, Gong YY (2010) Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis 31(1):71–82. https://doi.org/10.1093/carcin/bgp264
Wilson TG (2004) The molecular site of action of juvenile hormone and juvenile hormone insecticides during metamorphosis: how these compounds kill insects. J Insect Physiol 50(2–3):111–121. https://doi.org/10.1016/j.jinsphys.2003.12.004
Wilson MR, Zha L, Balskus EP (2017) Natural product discovery from the human microbiome. J Biol Chem 292(21):8546–8552. https://doi.org/10.1074/jbc.R116.762906
Xu ZF, Wang BL, Sun HK, Yan N, Zeng ZJ, Zhang KQ, Niu XM (2015) High trap formation and low metabolite production by disruption of the polyketide synthase gene involved in the biosynthesis of arthrosporols from nematode-trapping fungus Arthrobotrys oligospora. J Agric Food Chem 63(41):9076–9082. https://doi.org/10.1021/acs.jafc.5b04244
Yaegashi J, Oakley BR, Wang CC (2014) Recent advances in genome mining of secondary metabolite biosynthetic gene clusters and the development of heterologous expression systems in Aspergillus nidulans. J Ind Microbiol Biotechnol 41(2):433–442. https://doi.org/10.1007/s10295-013-1386-z
Yoder OC (1980) Toxins in Pathogenesis. Annu Rev Phytopathol 18(1):103–129. https://doi.org/10.1146/annurev.py.18.090180.000535
Youssar L, Wernet V, Hensel N, Yu X, Hildebrand HG, Schreckenberger B, Kriegler M, Hetzer B, Frankino P, Dillin A, Fischer R (2019) Intercellular communication is required for trap formation in the nematode-trapping fungus Duddingtonia flagrans. PLoS Genet 15(3):e1008029. https://doi.org/10.1371/journal.pgen.1008029
Yu L, Ding W, Wang Q, Ma Z, Xu X, Zhao X, Chen Z (2017) Induction of cryptic bioactive 2,5-diketopiperazines in fungus Penicillium sp. DT-F29 by microbial co-culture. Tetrahedron 73(7):907–914. https://doi.org/10.1016/j.tet.2016.12.077
Yu X, Hu X, Pop M, Wernet N, Kirschhöfer F, Brenner-Weiss G, Keller J, Bunzel M, Fischer R (2021a) Fatal attraction of Caenorhabditis elegans to predatory fungi through 6-methyl-salicylic acid. Nat Commun 12(1):5462. https://doi.org/10.1038/s41467-021-25,535-1
Yu Y, Zhang YK, Manohar M, Artyukhin AB, Kumari A, Tenjo-Castano FJ, Nguyen H, Routray P, Choe A, Klessig DF, Schroeder FC (2021b) Nematode signaling molecules are extensively metabolized by animals, plants, and microorganisms. ACS Chem Biol 16(6):1050–1058. https://doi.org/10.1021/acschembio.1c00217
Zhang T, Sun X, Xu Q, Candelas LG, Li H (2013) The pH signaling transcription factor PacC is required for full virulence in Penicillium digitatum. Appl Microbiol Biotechnol 97(20):9087–9098. https://doi.org/10.1007/s00253-013-5129-x
Zhao J, Cheng W, He X, Liu Y (2018) The co-colonization prevalence of Pseudomonas aeruginosa and Aspergillus fumigatus in cystic fibrosis: a systematic review and meta-analysis. Microb Pathog 125:122–128. https://doi.org/10.1016/j.micpath.2018.09.010
Zhu F, Chen G, Chen X, Huang M, Wan X (2011) Aspergicin, a new antibacterial alkaloid produced by mixed fermentation of two marine-derived mangrove epiphytic fungi. Chem Nat Compd 47(5):767–769. https://doi.org/10.1007/s10600-011-0053-8
Zingales V, Fernández-Franzón M, Ruiz MJ (2020) Sterigmatocystin: occurrence, toxicity and molecular mechanisms of action - a review. Food Chem Toxicol 146:111802. https://doi.org/10.1016/j.fct.2020.111802
Zipperer A, Konnerth MC, Laux C, Berscheid A, Janek D, Weidenmaier C, Burian M, Schilling NA, Slavetinsky C, Marschal M, Willmann M, Kalbacher H, Schittek B, Brötz-Oesterhelt H, Grond S, Peschel A, Krismer B (2016) Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535(7613):511–516. https://doi.org/10.1038/nature18634
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Zehner, L.M., Krespach, M.K.C., Stroe, M.C., Rosin, M., Schroeckh, V., Brakhage, A.A. (2023). Activation of Secondary Metabolite Production in Fungi. In: Pöggeler, S., James, T. (eds) Evolution of Fungi and Fungal-Like Organisms. The Mycota, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-031-29199-9_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-29199-9_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-29198-2
Online ISBN: 978-3-031-29199-9
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)