Skip to main content

Proposal for Turning Point Detection Method Using Financial Text and Transformer

  • Conference paper
  • First Online:
New Frontiers in Artificial Intelligence (JSAI-isAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13859))

Included in the following conference series:

  • 292 Accesses

Abstract

In this study, we demonstrate whether analysts’ sentiment toward individual stocks is useful for stock market analysis. This can be achieved by creating a polarity index in analyst reports using natural language processing. In this study, we calculated anomaly scores for the created polarity index using anomaly detection algorithms. The results show that the proposed method is effective in detecting the turning point of the polarity index.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://alternativedata.or.jp.

  2. 2.

    https://github.com/cl-tohoku/bert-japanese.

  3. 3.

    We labeled the correct answers as 1 and the incorrect answers as 0.

  4. 4.

    https://finance.yahoo.co.jp/.

References

  1. Ito, T., Tsubouchi, K., Sakaji, H., Yamashita, T., Izumi, K.: Contextual sentiment neural network for document sentiment analysis. Data Sci. Eng. 5(2), 180–192 (2020)

    Article  MATH  Google Scholar 

  2. Sakaji, H., Kuramoto, R., Matsushima, H., Izumi, K., Shimada, T., Sunakawa, K.: Financial text data analytics framework for business confidence indices and inter-industry relations. In: Proceedings of the First Workshop on Financial Technology and Natural Language Processing, pp. 40–46 (2019)

    Google Scholar 

  3. Yono, K., Sakaji, H., Matsushima, H., Shimada, T., Izumi, K.: Construction of macroeconomic uncertainty indices for financial market analysis using a supervised topic model. J. Risk Finan. Manag. 13(4), 79 (2020)

    Article  Google Scholar 

  4. Jin, Z., Yang, Y., Liu, Y.: Stock closing price prediction based on sentiment analysis and LSTM. Neural Comput. Appl. 32(13), 9713–9729 (2020)

    Article  Google Scholar 

  5. Hiramatsu, K., Miwa, K., Sakai, H., Sakaji, H.: [Analyst Report Tone Information Value] Anarisutorepōto no tōn no jōhō kachi (in Japanese), Shōken anarisutojānaru 59(2), Securities Anal. J. 59(2), 86–97 (2021)

    Google Scholar 

  6. Asquith, P., Mikhail, M.B., Au, A.S.: Information content of equity analyst reports. J. Financ. Econ. 75(2), 245–282 (2005)

    Article  Google Scholar 

  7. Suzuki, M., Sakaji, H., Izumi, K., Matsushima, H., Ishikawa, Y.: Forecasting net income estimate and stock price using text mining from economic reports. Information 11(6), 292 (2020)

    Article  Google Scholar 

  8. Hiew, J.Z.G., Huang, X., Mou, H., Li, D., Wu, Q., Xu, Y.: BERT-based financial sentiment index and LSTM-based stock return predictability. arXiv preprint arXiv:1906.09024 (2019)

  9. Ding, Q., Wu, S., Sun, H., Guo, J., Guo, J.: Hierarchical multi-scale gaussian transformer for stock movement prediction. In: IJCAI, pp. 4640–4646 (2020)

    Google Scholar 

  10. Ahmed, M., Choudhury, N., Uddin, S.: Anomaly detection on big data in financial markets. In: 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 998–1001. IEEE (2017)

    Google Scholar 

  11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  12. Taguchi, R., et al.: Market trend analysis using polarity index generated from analyst reports. In: 2021 IEEE International Conference on Big Data (Big Data), pp. 3486–3494. IEEE (2021)

    Google Scholar 

  13. Sakaji, H., Sakai, H., Masuyama, S.: Automatic extraction of basis expressions that indicate economic trends. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 977–984. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68125-0_102

    Chapter  Google Scholar 

  14. Kazemi, S.M., et al.: Time2vec: learning a vector representation of time. arXiv preprint arXiv:1907.05321 (2019)

  15. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  16. Wu, N., Green, B., Ben, X., O’Banion, S.: Deep transformer models for time series forecasting: the influenza prevalence case. arXiv preprint arXiv:2001.08317 (2020)

  17. Yamanishi, K., Takeuchi, J.I.: A unifying framework for detecting outliers and change points from non-stationary time series data. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 676–681 (2002)

    Google Scholar 

  18. Hotelling, H.: Multivariate quality control. Techniques of statistical analysis (1947)

    Google Scholar 

Download references

Acknowledgment

This work was partially supported by JST-Mirai Program Grant Number JPMJMI20B1, Japan. This work was also supported by IFIS Japan Limited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rei Taguchi .

Editor information

Editors and Affiliations

Appendices

Appendix A Evaluation Metrics for Time Series Deep Learning Models

In this section, we define the comparison metrics used in the comparison experiments.

$$\begin{aligned} MAE = \frac{1}{N}\sum _{i=1}^{N}|y_i - \hat{y_i}| \end{aligned}$$
(3)
$$\begin{aligned} MSE = \frac{1}{N}\sum _{i=1}^{N}(y_i - \hat{y_i})^2 \end{aligned}$$
(4)
$$\begin{aligned} RMSE = \sqrt{\frac{1}{N}\sum _{i=1}^{N}(y_i - \hat{y_i})^2} \end{aligned}$$
(5)
$$\begin{aligned} MSLE = \frac{1}{N}\sum _{i=1}^{N} (log(y_i + 1) - log(\hat{y_i} + 1))^2 \end{aligned}$$
(6)

where \(\hat{y_i}\) is the predicted value at i and \(\hat{y_i}\) is the measured value at i. The closer to zero each evaluation index is, the better it is.

Appendix B Empirical Results for Industry-Specific Polarity Index

This appendix shows the anomaly scores of the polarity index by industry. The selection of industries was done randomly among 33 industries (Figs. 7, 8 and 9).

Fig. 7.
figure 7

Turning Point Detection for Construction Polarity Index

Fig. 8.
figure 8

Turning Point Detection for Wholesale Polarity Index

Fig. 9.
figure 9

Turning Point Detection for Other Products Polarity Index

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Taguchi, R., Watanabe, H., Sakaji, H., Izumi, K., Hiramatsu, K. (2023). Proposal for Turning Point Detection Method Using Financial Text and Transformer. In: Takama, Y., Yada, K., Satoh, K., Arai, S. (eds) New Frontiers in Artificial Intelligence. JSAI-isAI 2022. Lecture Notes in Computer Science(), vol 13859. Springer, Cham. https://doi.org/10.1007/978-3-031-29168-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29168-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29167-8

  • Online ISBN: 978-3-031-29168-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics