Skip to main content

T-Cell Receptor Optimization with Reinforcement Learning and Mutation Polices for Precision Immunotherapy

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2023)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13976))

Abstract

T cells monitor the health status of cells by identifying foreign peptides displayed on their surface. T-cell receptors (TCRs), which are protein complexes found on the surface of T cells, are able to bind to these peptides. This process is known as TCR recognition and constitutes a key step for immune response. Optimizing TCR sequences for TCR recognition represents a fundamental step towards the development of personalized treatments to trigger immune responses killing cancerous or virus-infected cells. In this paper, we formulated the search for these optimized TCRs as a reinforcement learning (\(\mathop {\texttt{RL}}\limits \)) problem, and presented a framework \(\mathop {\texttt{TCRPPO}}\limits \) with a mutation policy using proximal policy optimization. \(\mathop {\texttt{TCRPPO}}\limits \) mutates TCRs into effective ones that can recognize given peptides. \(\mathop {\texttt{TCRPPO}}\limits \) leverages a reward function that combines the likelihoods of mutated sequences being valid TCRs measured by a new scoring function based on deep autoencoders, with the probabilities of mutated sequences recognizing peptides from a peptide-TCR interaction predictor. We compared \(\mathop {\texttt{TCRPPO}}\limits \) with multiple baseline methods and demonstrated that \(\mathop {\texttt{TCRPPO}}\limits \) significantly outperforms all the baseline methods to generate positive binding and valid TCRs. These results demonstrate the potential of \(\mathop {\texttt{TCRPPO}}\limits \) for both precision immunotherapy and peptide-recognizing TCR motif discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code is available at https://github.com/ninglab/TCRPPO.

  2. 2.

    https://vdjdb.cdr3.net/motif.

References

  1. Abati, D., Porrello, A., Calderara, S., Cucchiara, R.: Latent space autoregression for novelty detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June 2019)

    Google Scholar 

  2. Angermüller, C., Dohan, D., Belanger, D., Deshpande, R., Murphy, K., Colwell, L.: Model-based reinforcement learning for biological sequence design. In: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020 (2020)

    Google Scholar 

  3. Arnold, F.H.: Design by directed evolution. Acc. Chem. Res. 31(3), 125–131 (1998)

    Google Scholar 

  4. Cai, M., Bang, S., Zhang, P., Lee, H.: ATM-TCR: TCR-epitope binding affinity prediction using a multi-head self-attention model. Front. Immunol. 13 (2022)

    Google Scholar 

  5. Chen, S.Y., Yue, T., Lei, Q., Guo, A.Y.: TCRdb: a comprehensive database for t-cell receptor sequences with powerful search function. Nucleic Acids Res. 49(D1), D468–D474 (2020)

    Google Scholar 

  6. Chen, Z., Min, M.R., Ning, X.: Ranking-based convolutional neural network models for peptide-MHC class i binding prediction. Front. Mol. Biosci. 8 (2021)

    Google Scholar 

  7. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75538-8_7

  8. Craiu, A., Akopian, T., Goldberg, A., Rock, K.L.: Two distinct proteolytic processes in the generation of a major histocompatibility complex class i-presented peptide. Proc. Natl. Acad. Sci. 94(20), 10850–10855 (1997)

    Google Scholar 

  9. Esfahani, K., Roudaia, L., Buhlaiga, N., Rincon, S.D., Papneja, N., Miller, W.: A review of cancer immunotherapy: From the past, to the present, to the future. Curr. Oncol. 27(12), 87–97 (2020)

    Google Scholar 

  10. Glanville, J., et al.: Identifying specificity groups in the t cell receptor repertoire. Nature 547(7661), 94–98 (2017)

    Article  Google Scholar 

  11. Gómez-Bombarelli, R., et al.: Automatic chemical design using a data-driven continuous representation of molecules. ACS Central Sci. 4(2), 268–276 (2018)

    Google Scholar 

  12. González, J., Longworth, J., James, D.C., Lawrence, N.D.: Bayesian optimization for synthetic gene design (2015)

    Google Scholar 

  13. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)

    Google Scholar 

  14. Gupta, A., Zou, J.: Feedback GAN for DNA optimizes protein functions. Nat. Mach. Intell. 1(2), 105–111 (2019)

    Google Scholar 

  15. Hou, X., et al.: Analysis of the repertoire features of TCR beta chain CDR3 in human by high-throughput sequencing. Cell. Physiol. Biochem. 39(2), 651–667 (2016)

    Article  Google Scholar 

  16. Killoran, N., Lee, L.J., Delong, A., Duvenaud, D., Frey, B.J.: Generating and designing DNA with deep generative models. CoRR abs/1712.06148 (2017)

    Google Scholar 

  17. La Gruta, N.L., Gras, S., Daley, S.R., Thomas, P.G., Rossjohn, J.: Understanding the drivers of MHC restriction of t cell receptors. Nat. Rev. Immunol. 18(7), 467–478 (2018)

    Article  Google Scholar 

  18. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Proceedings of The 33rd International Conference on Machine Learning, vol. 48, pp. 1928–1937. PMLR, New York, New York, USA (20–22 June 2016)

    Google Scholar 

  19. Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection: a review. ACM Comput. Surv. 54(2) (2021)

    Google Scholar 

  20. Platt, J.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classif. 10(3), 61–74 (1999)

    Google Scholar 

  21. Rossjohn, J., Gras, S., Miles, J.J., Turner, S.J., Godfrey, D.I., McCluskey, J.: T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. 33, 169–200 (2015)

    Article  Google Scholar 

  22. Sadelain, M., Rivière, I., Riddell, S.: Therapeutic t cell engineering. Nature 545(7655), 423–431 (2017)

    Article  Google Scholar 

  23. Schulman, J., Moritz, P., Levine, S., Jordan, M., Abbeel, P.: High-dimensional continuous control using generalized advantage estimation. In: Proceedings of the International Conference on Learning Representations (ICLR) (2016)

    Google Scholar 

  24. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. CoRR abs/1707.06347 (2017)

    Google Scholar 

  25. Shugay, M., Bagaev, D.V., Zvyagin, I.V., Vroomans, R.M., Crawford, J.C., Dolton, G., et al.: VDJdb: a curated database of t-cell receptor sequences with known antigen specificity. Nucleic Acids Res. 46(D1), D419–D427 (2017)

    Google Scholar 

  26. Skwark, M.J., et al.: Designing a prospective COVID-19 therapeutic with reinforcement learning. CoRR abs/2012.01736 (2020)

    Google Scholar 

  27. Snover, M., Dorr, B., Schwartz, R., Micciulla, L., Makhoul, J.: A study of translation edit rate with targeted human annotation. In: Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers, pp. 223–231. Cambridge, Massachusetts, USA (8–12 August 2006)

    Google Scholar 

  28. Springer, I., Besser, H., Tickotsky-Moskovitz, N., Dvorkin, S., Louzoun, Y.: Prediction of specific TCR-peptide binding from large dictionaries of TCR-peptide pairs. Front. Immunol. 11 (2020)

    Google Scholar 

  29. Tickotsky, N., Sagiv, T., Prilusky, J., Shifrut, E., Friedman, N.: McPAS-TCR: a manually curated catalogue of pathology-associated t cell receptor sequences. Bioinformatics 33(18), 2924–2929 (2017)

    Google Scholar 

  30. Verdegaal, E.M.E., et al.: Neoantigen landscape dynamics during human melanoma–t cell interactions. Nature 536(7614), 91–95 (2016)

    Google Scholar 

  31. Waldman, A.D., Fritz, J.M., Lenardo, M.J.: A guide to cancer immunotherapy: from t cell basic science to clinical practice. Nat. Rev. Immunol. 20(11), 651–668 (2020)

    Google Scholar 

  32. Weber, A., Born, J., Martínez, M.R.: TITAN: T-cell receptor specificity prediction with bimodal attention networks. Bioinformatics 37(Supplement_1), i237–i244 (2021)

    Google Scholar 

  33. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2) (1994)

    Google Scholar 

  34. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1(2), 270–280 (1989)

    Google Scholar 

  35. Zong, B., et al.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin Renqiang Min or Xia Ning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Z., Min, M.R., Guo, H., Cheng, C., Clancy, T., Ning, X. (2023). T-Cell Receptor Optimization with Reinforcement Learning and Mutation Polices for Precision Immunotherapy. In: Tang, H. (eds) Research in Computational Molecular Biology. RECOMB 2023. Lecture Notes in Computer Science(), vol 13976. Springer, Cham. https://doi.org/10.1007/978-3-031-29119-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29119-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29118-0

  • Online ISBN: 978-3-031-29119-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics