Skip to main content

Practical and Secure Federated Recommendation with Personalized Mask

  • Conference paper
  • First Online:
Trustworthy Federated Learning (FL 2022)

Abstract

Federated recommendation addresses the data silo and privacy problems altogether for recommender systems. Current federated recommender systems mainly utilize cryptographic or obfuscation methods to protect the original ratings from leakage. However, the former comes with extra communication and computation costs, and the latter damages model accuracy. Neither of them could simultaneously satisfy the real-time feedback and accurate personalization requirements of recommender systems. In this work, we proposed federated masked matrix factorization (FedMMF) to protect the data privacy in federated recommender systems without sacrificing efficiency and effectiveness. In more details, we introduce the new idea of personalized mask generated only from local data and apply it in FedMMF. On the one hand, personalized mask offers protection for participants’ private data without effectiveness loss. On the other hand, combined with the adaptive secure aggregation protocol, personalized mask could further improve efficiency. Theoretically, we provide security analysis for personalized mask. Empirically, we also show the superiority of the designed model on different real-world data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://en.wikipedia.org/wiki/Hoeffding’s_inequality.

References

  1. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdisc. Rev. Comput. Stat. 2(4), 433–459 (2010)

    Article  Google Scholar 

  2. Ammad-Ud-Din, M., et al.: Federated collaborative filtering for privacy-preserving personalized recommendation system. arXiv preprint arXiv:1901.09888 (2019)

  3. Aono, Y., Hayashi, T., Wang, L., Moriai, S., et al.: Privacy-preserving deep learning via additively homomorphic encryption. IEEE Trans. Inf. Forensics Secur. 13(5), 1333–1345 (2017)

    Google Scholar 

  4. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191 (2017)

    Google Scholar 

  5. Cantador, I., Brusilovsky, P., Kuflik, T.: 2nd workshop on information heterogeneity and fusion in recommender systems (HETREC 2011). In: Proceedings of the 5th ACM Conference on Recommender Systems, RecSys 2011. ACM, New York (2011)

    Google Scholar 

  6. Chai, D., Wang, L., Chen, K., Yang, Q.: Secure federated matrix factorization. IEEE Intell. Syst. 36, 11–20 (2020)

    Article  Google Scholar 

  7. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 169–178 (2009)

    Google Scholar 

  9. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans Interact. Intell. Syst. (TiiS) 5(4), 1–19 (2015)

    Google Scholar 

  10. Hua, J., Xia, C., Zhong, S.: Differentially private matrix factorization. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, pp. 1763–1770. AAAI Press (2015)

    Google Scholar 

  11. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  12. Lazard, D.: Thirty years of polynomial system solving, and now? J. Symb. Comput. 44(3), 222–231 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  14. McMahan, H.B., et al.: Advances and open problems in federated learning. Found. Trends® Mach. Learn. 14(1) (2021)

    Google Scholar 

  15. Montgomery, D.C., Peck, E.A., Vining, G.G.: Introduction to Linear Regression Analysis, vol. 821. Wiley, Hoboken (2012)

    MATH  Google Scholar 

  16. Rendle, S.: Factorization machines. In: 2010 IEEE International Conference on Data Mining, pp. 995–1000. IEEE (2010)

    Google Scholar 

  17. Robertson, S.: Understanding inverse document frequency: on theoretical arguments for IDF. J. Documentation (2004)

    Google Scholar 

  18. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yang, L., Tan, B., Zheng, V.W., Chen, K., Yang, Q.: Federated recommendation systems. In: Yang, Q., Fan, L., Yu, H. (eds.) Federated Learning. LNCS (LNAI), vol. 12500, pp. 225–239. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63076-8_16

    Chapter  Google Scholar 

  20. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)

    Article  Google Scholar 

  21. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science (SFCS 1982), pp. 160–164. IEEE (1982)

    Google Scholar 

  22. Yegnanarayana, B.: Artificial Neural Networks. PHI Learning Pvt., Ltd. (2009)

    Google Scholar 

  23. Zhu, L., Liu, Z., Han, S.: Deep leakage from gradients. In: Advances in Neural Information Processing Systems, pp. 14774–14784 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, L. et al. (2023). Practical and Secure Federated Recommendation with Personalized Mask. In: Goebel, R., Yu, H., Faltings, B., Fan, L., Xiong, Z. (eds) Trustworthy Federated Learning. FL 2022. Lecture Notes in Computer Science(), vol 13448. Springer, Cham. https://doi.org/10.1007/978-3-031-28996-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28996-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28995-8

  • Online ISBN: 978-3-031-28996-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics