Skip to main content

Biological Pathways Linking Social Determinants to Health

  • Chapter
  • First Online:
Understanding Health Determinants

Abstract

This book reviews theoretical explanations for how social circumstances ultimately affect health and longevity. The final step in the causal chain, addressed in this chapter, involves understanding how biological systems respond to the influence of social determinants, triggering disease processes. The chapter opens with a discussion of the central role of the brain and the limbic system in interpreting and responding to challenges. It describes how brain circuits that fire repeatedly tend to become the default setting, with lasting effects on health over the life course. The physiological responses involve the endocrine, nervous, and immune systems, and the key mechanisms are summarized. In particular, the stress response and chronic inflammation form key pathways that link social determinants to adverse health outcomes, and this chapter describes the ways in which these vary by socioeconomic status. Genetic and epigenetic mechanisms that explain individual susceptibility are described. This chapter closes with a discussion of the concept of embodiment as a summary of how external influences ‘get under the skin.’

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The prefix ‘sym-’ is a Latinized form of the Greek συμ. Like ‘syn’ or συν, it means with, together, or alike. The ‘sym’ form is used before labials (letters formed with the lips such as p, b, m, f, v). The suffix ‘-pathetic’ comes from Greek pathos (παθος) and refers to feeling, suffering, or disease. ‘Para-’ (παρα) means beside or beyond. ‘Sympathetic’ alludes to the idea that this branch reacts to feelings of threat, whereas the ‘para’ counteracts such feelings.

  2. 2.

    Genetic variance is an estimate of how much of the variation in a phenotype is attributable to genetic variation.

References

  1. Ezra Y, Hammerman O, Shahar G. The four-cluster spectrum of mind-body interrelationships: an integrative model. Front Psychiatry. 2019;10(39):1–11.

    Google Scholar 

  2. Dall SRX, McNamara JM, Leimar O. Genes as cues: phenotypic integration of genetic and epigenetic information from a Darwinian perspective. Trends Ecol Evol. 2015;30(6):327–33.

    Article  PubMed  Google Scholar 

  3. Dorling D. Healthy places, healthy spaces. Br Med Bull. 2004;69(1):101–14.

    Article  PubMed  Google Scholar 

  4. Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science. 2016;353(6301):777–83.

    Article  CAS  PubMed  Google Scholar 

  5. Ho VM, Lee J-A, Martin KC. The cell biology of synaptic plasticity. Science. 2011;334(4 November):623–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wilson EO. Consilience: the unity of knowledge. New York: Alfred A. Knopf; 1998.

    Google Scholar 

  7. van der Kolk BA. The body keeps the score: brain, mind, and body in the healing of trauma. New York: Viking; 2014.

    Google Scholar 

  8. Joseph R. Environmental influences on neural plasticity, the limbic system, emotional development and attachment: a review. Child Psychiatry Hum Dev. 1998;29(3):189–208.

    Article  Google Scholar 

  9. Kahneman D. Thinking, fast and slow. London: Penguin Books; 2011.

    Google Scholar 

  10. Evans JSBT. Dual-processing accounts of reasoning, judgment, and social cognition. Annu Rev Psychol. 2008;59:255–78.

    Article  PubMed  Google Scholar 

  11. Gondré-Lewis MC, Bassey R, Blum K. Pre-clinical models of reward deficiency syndrome: a behavioral octopus. Neurosci Biobehav Rev. 2020;115:164–88.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Oken BS, Charmine I, Wakeland W. A systems approach to stress, stressors and resilience in humans. Behav Brain Res. 2015;282:144–54.

    Article  PubMed  Google Scholar 

  13. Mercado E, Hibel LC. I love you from the bottom of my hypothalamus: the role of stress physiology in romantic pair bond formation and maintenance: Stress physiology and pair bonding. Soc Personal Psychol Compass. 2017;11(2):e12298.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Teicher MH, Samson JA. Annual research review: enduring neurobiological effects of childhood abuse and neglect. J Child Psychol Psychiatry. 2016;57(3):241–66.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pakulak E, Stevens C, Neville H. Neuro-, cardio-, and immunoplasticity: effects of early adversity. Annu Rev Psychol. 2018;69:131–56.

    Article  PubMed  Google Scholar 

  16. Hertzman C, Boyce T. How experience gets under the skin to create gradients in developmental health. Annu Rev Public Health. 2010;31:329–47.

    Article  PubMed  Google Scholar 

  17. McEwen BS, Gianaros PJ. Central role of the brain in stress and adaptation: Links to socioeconomic status, health, and disease. Ann N Y Acad Sci. 2010;1186:190–222.

    Article  PubMed  PubMed Central  Google Scholar 

  18. McEwen CA, McEwen BS. Social structure, adversity, toxic stress, and intergenerational poverty: an early childhood model. Annu Rev Sociol. 2017;43:445–72.

    Article  Google Scholar 

  19. Cacioppo JT, Cacioppo S, Capitanio JP, Cole SW. The neuroendocrinology of social isolation. Annu Rev Psychol. 2015;66:733–67.

    Article  PubMed  Google Scholar 

  20. Kaptchuk TJ. Open-label placebo: reflections on a research agenda. Perspect Biol Med. 2018;61(3):311–34.

    Article  PubMed  Google Scholar 

  21. Schiller M, Azulay-Debby H, Boshnak N, Elyahu Y, Korin B, Ben-Shaanan TL, et al. Optogenetic activation of local colonic sympathetic innervations attenuates colitis by limiting immune cell extravasation. Immunity. 2021;54(5):1022–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Porges SW. The polyvagal theory: phylogenetic substrates of a social nervous system. Int J Psychophysiol. 2001;42:123–46.

    Article  CAS  PubMed  Google Scholar 

  23. Liu HC, Boyatzis RE. Focusing on resilience and renewal from stress: the role of emotional and social intelligence competencies. Front Psychol. 2021;12:685829.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Porges SW. Social engagement and attachment: a phylogenetic perspective. Ann N Y Acad Sci. 2003;1008(1):31–47.

    Article  PubMed  Google Scholar 

  25. Porges SW. The polyvagal perspective. Biol Psychol. 2007;74:116–43.

    Article  PubMed  Google Scholar 

  26. Porges SW. The polyvagal theory: new insights into adaptive reactions of the autonomic nervous system. Clevel Clin J Med. 2009;76(Suppl. 2):S86–90.

    Article  Google Scholar 

  27. Deary IJ. Looking for ‘system integrity’ in cognitive epidemiology. Gerontology. 2012;58:545–53.

    Article  PubMed  Google Scholar 

  28. Fagundes CP, Wu EL. Matters of the heart: grief, morbidity, and mortality. Curr Dir Psychol Sci. 2020;29(3):235–41.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Voisin A. Soil, grass and cancer. New York: Philosophical Library; 1959.

    Google Scholar 

  30. Wallen K, Hassett J. Neuroendocrine mechanisms underlying social relationships. In: Ellison PT, Gray PB, editors. Endocrinology of social relationships. Cambridge, MA: Harvard University Press; 2009. p. 32–53.

    Google Scholar 

  31. Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev. 2000;21(1):55–89.

    CAS  PubMed  Google Scholar 

  32. Dickerson SS, Kemeny ME. Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychol Bull. 2004;130:355–91.

    Article  PubMed  Google Scholar 

  33. Holsboer F, Ising M. Stress hormone regulation: biological role and translation into therapy. Annu Rev Psychol. 2010;61:81–109.

    Article  PubMed  Google Scholar 

  34. Chen FS, Heinrichs M, Johnson SC. Oxytocin and the emergence of individual differences in the social regulation of stress. Soc Personal Psychol Compass. 2017;11:e12332.

    Article  Google Scholar 

  35. Linden DJ. The compass of pleasure: how our brains make fatty foods, orgasm, exercise, marijuana, generosity, vodka, learning and gambling feel so good. New York/London: Penguin Books; 2011.

    Google Scholar 

  36. Carter CS. The oxytocin–vasopressin pathway in the context of love and fear. Front Endocrinol (Lausanne). 2017;8:356.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Blum K, Braverman ER, Holder JM, Lubar JF, Monastra VJ, Miller D, et al. Reward deficiency syndrome: a biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J Psychoactive Drugs. 2000;32(Suppl i–iv):1–112.

    Article  Google Scholar 

  38. Doidge N. The brain that changes itself: stories of personal triumph from the frontiers of brain science. New York/London: Penguin Books; 2007.

    Google Scholar 

  39. Comings DE, Blum K. Reward deficiency syndrome: genetic aspects of behavioral disorders. Prog Brain Res. 2000;126:325–41.

    Article  CAS  PubMed  Google Scholar 

  40. Ellison PT. Social relationships and reproductive ecology. In: Ellison PT, Gray PB, editors. Endocrinology of social relationships. Cambridge, MA: Harvard University Press; 2009. p. 54–73.

    Google Scholar 

  41. Gunnar M, Quevedo K. The neurobiology of stress and development. Annu Rev Psychol. 2007;58:145–73.

    Article  PubMed  Google Scholar 

  42. Francis RC. Epigenetics: the ultimate mystery of inheritance. New York: WW Norton & Company; 2011.

    Google Scholar 

  43. Smith SM, Vale WW. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci. 2006;8(4):383–95.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Carlson LE, Toivonen K, Subnis U. Integrative approaches to stress management. Cancer J. 2019;25(5):329–36.

    Article  PubMed  Google Scholar 

  45. Bedford F. A perception theory in mind–body medicine: guided imagery and mindful meditation as cross-modal adaptation. Psychonomic Bull Rev. 2012;19(1):24–45.

    Article  Google Scholar 

  46. Segerstrom SC. Resources, stress, and immunity: an ecological perspective on human psychoneuroimmunology. Ann Behav Med. 2010;40:114–25.

    Article  PubMed  Google Scholar 

  47. Gargano LM, Hughes JM. Microbial origins of chronic diseases. Annu Rev Public Health. 2014;35:65–82.

    Article  PubMed  Google Scholar 

  48. Younes JA, Lievens E, Hummelen R, van der Westen R, Reid GJ, Petrova MI. Women and their microbes: the unexpected friendship. Trends Microbiol. 2018;26(1):16–32.

    Article  CAS  PubMed  Google Scholar 

  49. Sylvia KE, Demas GE. A gut feeling: microbiome-brain-immune interactions modulate social and affective behaviors. Horm Behav. 2018;99:41–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Camara-Lemarroy CR, Metz LM, Yong VW. Focus on the gut-brain axis: multiple sclerosis, the intestinal barrier and the microbiome. World J Gastroenterol. 2018;24(37):4217–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Eyer J. Prosperity as a cause of death. Int J Health Serv. 1977;7(1):125–49.

    Article  CAS  PubMed  Google Scholar 

  52. Ader R, Cohen N. Conditioned immunopharmacologic responses. In: Ader R, editor. Psychoneuroimmunology. New York: Academic; 1981. p. 281–319.

    Google Scholar 

  53. Ader R. Psychoneuroimmunology. New York: Academic; 1981.

    Google Scholar 

  54. Glaser R, Rabin B, Chesney M, Cohen S, Natelson B. Stress-induced immunomodulation: implications for infectious diseases? J Am Med Assoc. 1999;281:23–30.

    Article  Google Scholar 

  55. Kennedy S, Kiecolt-Glaser JK, Glaser R. Immunological consequences of acute and chronic stressors: mediating role of interpersonal relationships. Br J Med Psychol. 1988;61:77–85.

    Article  PubMed  Google Scholar 

  56. Bartrop RW, Lazarus L, Luckhurst E, Kiloh LG, Penny R. Depressed lymphocyte function after bereavement. Lancet. 1977;309(8016):834–6.

    Article  Google Scholar 

  57. Pettingale KW. Towards a psychobiological model of cancer: biological considerations. Soc Sci Med. 1985;20:179–87.

    Article  Google Scholar 

  58. Cohen S. Stress, social support, and disorder. In: Veiel HOF, Baumann U, editors. The meaning and measurement of social support. 1. New York: Hemisphere Publishing; 1992. p. 109–24.

    Google Scholar 

  59. Cohen S, Doyle WJ, Skoner DP. Psychological stress, cytokine production, and severity of upper respiratory illness. Psychosom Med. 1999;61(2):175–80.

    Article  CAS  PubMed  Google Scholar 

  60. Cohen S, Doyle WJ, Skoner DP, Rabin BS, Gwaltney JM. Social ties and susceptibility to the common cold. JAMA. 1997;277(24):1940–4.

    Article  CAS  PubMed  Google Scholar 

  61. Cohen S, Williamson GM. Stress and infectious disease in humans. Psychol Bull. 1991;109(1):5–24.

    Article  CAS  PubMed  Google Scholar 

  62. Cohen S, Tyrrell DAJ, Smith AP. Psychological stress and susceptibility to the common cold. N Engl J Med. 1991;325:606–11.

    Article  CAS  PubMed  Google Scholar 

  63. Gibb J, Audet M-C, Hayley S, Anisman H. Neurochemical and behavioral responses to inflammatory immune stressors. Front Biosci. 2009;1:275–95.

    Article  Google Scholar 

  64. Slavich GM, O’Donovan A, Epel ES, Kemeny ME. Black sheep get the blues: a psychobiological model of social rejection and depression. Neurosci Biobehav Rev. 2010;35:39–45.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Howell RT, Kern ML, Lyubomirsky S. Health benefits: meta-analytically determining the impact of well-being on objective health outcomes. Health Psychol Rev. 2007;1(1):83–136.

    Article  Google Scholar 

  66. Tabassum F, Kumari M, Rumley A, Lowe G, Power C, Strachan DP. Effects of socioeconomic position on inflammatory and hemostatic markers: a life-course analysis in the 1958 British Birth Cohort. Am J Epidemiol. 2008;167(11):1332–41.

    Article  PubMed  Google Scholar 

  67. Koster A, Bosma H, Penninx BWJH, Newman AB, Harris TB, van Eijk JTM, et al. Association of inflammatory markers with socioeconomic status. J Gerontol A. 2006;61(3):284–90.

    Article  Google Scholar 

  68. Fraga S, Marques-Vidal P, Vollenweider P, Waeber G, Guessous I, Paccaud F, et al. Association of socioeconomic status with inflammatory markers: a two cohort comparison. Prev Med. 2015;71:12–9.

    Article  PubMed  Google Scholar 

  69. McDade TW, Koning SM. Early origins of socioeconomic inequalities in chronic inflammation: evaluating the contributions of low birth weight and short breastfeeding. Soc Sci Med. 2021;269(113592).

    Google Scholar 

  70. Hawkley LC, Cacioppo JT. Loneliness matters: a theoretical and empirical review of consequences and mechanisms. Ann Behav Med. 2010;40:218–27.

    Article  PubMed  Google Scholar 

  71. Kelly SJ, Ismail M. Stress and Type 2 diabetes: a review of how stress contributes to the development of Type 2 diabetes. Annu Rev Public Health. 2015;36:441–62.

    Article  PubMed  Google Scholar 

  72. Cooper SJ. From Claude Bernard to Walter Cannon. Emergence of the concept of homeostasis. Appetite. 2008;51:419–27.

    Article  PubMed  Google Scholar 

  73. Keller EF. Developmental robustness. Ann N Y Acad Sci. 2002;981:189–201.

    Article  PubMed  Google Scholar 

  74. Sterling P, Eyer J. Biological basis of stress-related mortality. Soc Sci Med. 1981;15E:3–42.

    Article  Google Scholar 

  75. McEwen BS. Prenatal programming of neuropsychiatric disorders: an epigenetic perspective across the lifespan. Biol Psychiatry. 2018;85(1):91–3.

    Google Scholar 

  76. Cao L, During MJ. What is the brain-cancer connection? Annu Rev Neurosci. 2012;35:331–45.

    Article  CAS  PubMed  Google Scholar 

  77. Sterling P. Allostasis: a model of predictive regulation. Physiol Behav. 2012;106(1):5–15.

    Article  CAS  PubMed  Google Scholar 

  78. McEwen BS, Stellar E. Stress and the individual: mechanisms leading to disease. Arch Intern Med. 1993;153:2093–101.

    Article  CAS  PubMed  Google Scholar 

  79. Delpierre C, Barbosa-Solis C, Torrisani J, Darnaudery M, Bartley M, Blane D, et al. Allostatic load as a measure of social embodiment: conceptual and empirical considerations. Longit Life Course Stud. 2016;7(1):80–5.

    Google Scholar 

  80. McEwen BS. Protective and damaging effects of stress mediators. N Engl J Med. 1998;338:171–9.

    Article  CAS  PubMed  Google Scholar 

  81. Wells JCK. Worldwide variability in growth and its association with health: incorporating body composition, developmental plasticity, and intergenerational effects. Am J Hum Biol. 2016;29:e22954.

    Article  Google Scholar 

  82. Wells JCK. Maternal capital and the metabolic ghetto: an evolutionary perspective on the transgenerational basis of health inequalities. Am J Hum Biol. 2010;22:1–17.

    Article  PubMed  Google Scholar 

  83. Wells JCK. The thrifty phenotype: an adaptation in growth or metabolism? Am J Hum Biol. 2011;23:65–75.

    Article  PubMed  Google Scholar 

  84. Johnson W, Krueger RF. Higher perceived life control decreases genetic variance in physical health: evidence from a national twin study. J Pers Soc Psychol. 2005;88(1):165–73.

    Article  PubMed  Google Scholar 

  85. Robertson T, Benzeval M, Whitley E, Popham F. The role of material, psychosocial and behavioral factors in mediating the association between socioeconomic position and allostatic load (measured by cardiovascular, metabolic and inflammatory markers). Brain Behav Immun. 2015;45:41–9.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Seeman T, Singer BH, Rowe JW, Horwitz RI, McEwen BS. Price of adaptation – allostatic load and its health consequences: MacArthur studies of successful aging. Arch Intern Med. 1997;157(19):2259–68.

    Article  CAS  PubMed  Google Scholar 

  87. Calabrese EJ, Basldwin LA. U-shaped dose-responses in biology, toxicology, and public health. Annu Rev Public Health. 2001;22:15–33.

    Article  CAS  PubMed  Google Scholar 

  88. McDowell I, Xi G, Lindsay J, Tierney MC. Mapping the connections between education and dementia in the elderly. J Clin Exp Neuropsychol. 2007;29:127–41.

    Article  PubMed  Google Scholar 

  89. Gladwell M. David and Goliath: underdogs, misfits, and the art of battling giants. New York: Back Bay Books: Little, Brown and Company; 2013.

    Google Scholar 

  90. Robinson AM. Let’s talk about stress: history of stress research. Rev Gen Psychol. 2018;22(3):334–42.

    Article  Google Scholar 

  91. Rubenstein DR, Ågren JA, Carbone L, Elde NC, Hoekstra HE, Kapheim KM, et al. Coevolution of genome architecture and social behavior. Trends Ecol Evol. 2019;34(9):844–55.

    Article  PubMed  Google Scholar 

  92. Sultan SE. Developmental plasticity: re-conceiving the genotype Interface Focus. 2017;7(5).

    Google Scholar 

  93. Szathmáry E. Why are there four letters in the genetic alphabet? Nat Rev Genet. 2003;4(12):995–1001.

    Article  PubMed  Google Scholar 

  94. Davis DM. The compatibility gene: how our bodies fight disease, attract others, and define our selves. Oxford: Oxford University Press; 2014.

    Google Scholar 

  95. MacFarlane AJ, Strom A, Scott FW. Epigenetics: deciphering how environmental factors may modify autoimmune type 1 diabetes. Mamm Genome. 2009;20(9-10):624–32.

    Article  CAS  PubMed  Google Scholar 

  96. Landecker H, Panofsky A. From social structure to gene regulation, and back: a critical introduction to environmental epigenetics for sociology. Annu Rev Sociol. 2013;39:333–57.

    Article  Google Scholar 

  97. Nicoglou A, Merlin F. Epigenetics: a way to bridge the gap between biological fields. Stud Hist Philos Biol Biomed Sci. 2017;66:73–82.

    Article  PubMed  Google Scholar 

  98. Ennis C, Pugh O. Introducing epigenetics: a graphic guide. London: Icon Books Ltd.; 2017. p. 176.

    Google Scholar 

  99. Foley DL, Craig JM, Morley R, Olsson CJ, Dwyer T, Smith K, et al. Prospects for epigenetic epidemiology. Am J Epidemiol. 2009;169(4):389–400.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Baylin SB, Schuebel KE. The epigenomic era opens. Science. 2007;448(2 August):548–9.

    CAS  Google Scholar 

  101. Szyf M. The epigenetics of perinatal stress. Dialogues Clin Neurosci. 2019;21(4):369–78.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Rozek LS, Dolinoy DC, Sartor MA, Omenn GS. Epigenetics: relevance and implications for public health. Annu Rev Public Health. 2014;35:105–22.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Relton CL, Davey Smith G. Is epidemiology ready for epigenetics? Int J Epidemiol. 2012;41(1):5–9.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Glier MB, Green TJ, Devlin AM. Methyl nutrients, DNA methylation, and cardiovascular disease. Mol Nutr Food Res. 2013;58(1):172–82.

    Article  PubMed  Google Scholar 

  105. Martin EM, Fry RC. Environmental influences on the epigenome: exposure-associated DNA methylation in human populations. Annu Rev Public Health. 2018;39:309–33.

    Article  PubMed  Google Scholar 

  106. Szyf M, McGowan P, Meaney MJ. The social environment and the epigenome. Environ Mol Mutagen. 2008;49:46–60.

    Article  CAS  PubMed  Google Scholar 

  107. Szyf M. Nongenetic inheritance and transgenerational epigenetics. Trends Mol Med. 2015;21(2):134–44.

    Article  PubMed  Google Scholar 

  108. Spector T. Identically different: why you can change your genes. London: Phoenix; 2012. 338 p.

    Google Scholar 

  109. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, et al. Epigenetic differences arise during the lifetime of monozygotic twins. PNAS. 2003;102(30):10604–9.

    Article  Google Scholar 

  110. Hoover RN. Editorial: cancer – nature, nurture, or both. N Engl J Med. 2000;343(2):135–7.

    Article  CAS  PubMed  Google Scholar 

  111. Bošković A, Rando OJ. Transgenerational epigenetic inheritance. Annu Rev Genet. 2018;52:21–41.

    Article  PubMed  Google Scholar 

  112. Gluckman PD, Hanson MA, Beedle AS. Non-genomic transgenerational inheritance of disease risk. Bioessays. 2007;29(2):145–54.

    Article  CAS  PubMed  Google Scholar 

  113. Jablonka E. Epigenetic epidemiology. Int J Epidemiol. 2004;33(5):929–35.

    Article  PubMed  Google Scholar 

  114. Zirkle C. The early history of the idea of the inheritance of acquired characters and of pangenesis. Trans Am Philos Soc. 1946;35(2):91–151.

    Article  Google Scholar 

  115. Evans L, Engelman M, Mikulas A, Malecki K. How are social determinants of health integrated into epigenetic research? A systematic review. Soc Sci Med. 2021;273:113738.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Christensen K, Johnson TE, Vaupel JW. The quest for genetic determinants of human longevity: challenges and insights. Nat Rev Genet. 2006;7(6):436–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Christensen K, McGue M, Petersen I, Jeune B, Vaupel JW. Exceptional longevity does not result in excessive levels of disability. Proc Natl Acad Sci U S A. 2008;105(36):13274–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Shostak S. Locating gene-environment interaction: at the intersections of genetics and public health. Soc Sci Med. 2003;56:2327–42.

    Article  PubMed  Google Scholar 

  119. Hanson MA, Low FM, Gluckman PD. Epigenetic epidemiology: the rebirth of soft inheritance. Ann Nutr Metab. 2011;58(Suppl. 2):8–15.

    Article  CAS  PubMed  Google Scholar 

  120. Puterman E, Epel E. An intricate dance: life experience, multisystem resiliency, and rate of telomere decline throughout the lifespan. Soc Personal Psychol Compass. 2013;6(11):807–25.

    Article  Google Scholar 

  121. Blackburn EH, Epel ES, Lin J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350(6265):1193–8.

    Article  CAS  PubMed  Google Scholar 

  122. Geronimus AT. The weathering hypothesis and the health of African-American women and infants: evidence and speculation. Ethn Dis. 1992;2:207–21.

    CAS  PubMed  Google Scholar 

  123. Rentscher KE, Carroll JE, Mitchell C. Psychosocial stressors and telomere length: a current review of the science. Annu Rev Public Health. 2020;41:223–45.

    Article  PubMed  Google Scholar 

  124. Müezzinler A, Schöttker B, Dieffenbach AD, Butterbach K, Schick M, Peasey A, et al. Leukocyte telomere length and all-cause, cardiovascular disease, and cancer mortality: results from individual-participant-data meta-analysis of 2 large prospective cohort studies. Am J Epidemiol. 2017;185(12):1317–26.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Fyhrquist F, Saijonmaa O. Telomere length and cardiovascular aging. Ann Med. 2012;44(Suppl. 1):S138–42.

    Article  CAS  PubMed  Google Scholar 

  126. Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet. 2003;361:393–5.

    Article  CAS  PubMed  Google Scholar 

  127. Kong CM, Lee XW, Wang X. Telomere shortening in human disease. FEBS J. 2013;280:3180–93.

    Article  CAS  PubMed  Google Scholar 

  128. Schutte NS, Malouff JM. The association between depression and leukocyte telomere length: a meta-analysis. Depress Anxiety. 2015;32(4):229–38.

    Article  CAS  PubMed  Google Scholar 

  129. Schutte NS, Malouff JM. The relationship between perceived stress and telomere length: a meta-analysis. Stress Health. 2016;32(4):313–9.

    Article  PubMed  Google Scholar 

  130. Hanssen LM, Schutte NS, Malouff JM, Epel ES. The relationship between childhood psychosocial stressor level and telomere length: a meta-analysis. Health Psychol Res. 2017;5(1):14–22.

    Article  Google Scholar 

  131. Schoeftner S, Blasco MA. A ‘higher order’ of telomere regulation: telomere heterochromatin and telomeric RNAs. EMBO J. 2009;28(16):2323–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mnestar-Blažić T. Hypothesis on transmission of longevity based on telomere length and state of integrity. Med Hypotheses. 2004;62:770–2.

    Article  Google Scholar 

  133. Kappei D, Londoño-Vallejo JA. Telomere length inheritance and aging. Mech Ageing Dev. 2008;129(1):17–26.

    Article  CAS  PubMed  Google Scholar 

  134. Needham BL, Adler N, Gregorich S, Rehkopf DH, Lin J, Blackburn EH, et al. Socioeconomic status, health behavior, and leukocyte telomere length in the National Health and Nutrition Examination Survey, 1999–2002. Soc Sci Med. 2013;85(May):1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Mitchell C, Hobcraft J, McLanahan SS, Siegel SR, Berg A, Brooks-Gunn J, et al. Social disadvantage, genetic sensitivity, and children’s telomere length. Proc Natl Acad Sci U S A. 2014;111(16):5944–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Needham BL, Fernandez JR, Lin J, Epel ES, Blackburn EH. Socioeconomic status and cell aging in children. Soc Sci Med. 2012;74(12):1948–51.

    Article  PubMed  Google Scholar 

  137. Kimura M, Hjelmborg JB, Gardner JP, Bathum L, Brimacombe M, Lu X, et al. Telomere length and mortality: a study of leucocytes in elderly Danish twins. Am J Epidemiol. 2008;167(7):799–806.

    Article  PubMed  Google Scholar 

  138. Coimbra BM, Carvalho CM, Ota VK, Vieira-Fonseco T, Bugiga A, Mello AF, et al. A systematic review on the effects of social discrimination on telomere length. Psychoneuroendocrinology. 2020;120:104766.

    Article  CAS  PubMed  Google Scholar 

  139. Robertson T, Batty GD, Fenton C, Shiels PG, Benzeval M. Is socioeconomic status associated with biological aging as measured by telomere length? Epidemiol Rev. 2013;35:98–111.

    Article  PubMed  Google Scholar 

  140. Schutte NS, Malouff JM, Keng S-L. Meditation and telomere length: a meta-analysis. Psychol Health. 2020;35(8):901–15.

    Article  PubMed  Google Scholar 

  141. Kendler KS. Adversity, stress, and psychopathology: a psychiatric genetic perspective. In: Dohrenwend BP, editor. Adversity, stress, and psychopathology, vol. 1. Oxford: Oxford University Press; 1998. p. 477–86.

    Google Scholar 

  142. Ridley M. Nature via nurture: genes, experience and what makes us human. London: Harper Perennial; 2003.

    Google Scholar 

  143. Jablonka E, Lamb MJ. The changing concept of epigenetics. Ann N Y Acad Sci. 2002;981:82–96.

    Article  PubMed  Google Scholar 

  144. Miller GW. When the genome falls short: limitations of a gene-centric view of health. In: Miller GW, editor. The exposome: a primer. Amsterdam/New York: Academic/Elsevier; 2014.

    Chapter  Google Scholar 

  145. Pigliucci M. Phenotypic plasticity. Baltimore: The Johns Hopkins University Press; 2001.

    Book  Google Scholar 

  146. Nicoglou A. The evolution of phenotypic plasticity: genealogy of a debate in genetics. Stud Hist Philos Biol Biomed Sci. 2015;50:67–76.

    Article  PubMed  Google Scholar 

  147. Gluckman PD, Hanson MA, Beedle AS. Early life events and their consequences for later disease: a life history and evolutionary perspective. Am J Hum Biol. 2007;19:1–19.

    Article  PubMed  Google Scholar 

  148. Beaman JE, White CR, Seebacher F. Evolution of plasticity: mechanistic link between development and reversible acclimation. Trends Ecol Evol. 2016;31(3):237–49.

    Article  PubMed  Google Scholar 

  149. Vineis P, Berwick M. The population dynamics of cancer: a Darwinian perspective. Int J Epidemiol. 2006;35:1151–9.

    Article  PubMed  Google Scholar 

  150. Halfon N, Larson K, Lu M, Tullis E, Russ S. Lifecourse health development: past, present and future. Matern Child Health J. 2014;18:344–65.

    Article  PubMed  Google Scholar 

  151. Wells JCK. Obesity as malnutrition: the role of capitalism in the obesity global epidemic. Am J Hum Biol. 2012;24:261–76.

    Article  PubMed  Google Scholar 

  152. Gluckman PD, Hanson MA, Buklijas T. A conceptual framework for the developmental origins of health and disease. J Dev Orig Health Dis. 2010;1(1):6–18.

    Article  CAS  PubMed  Google Scholar 

  153. Gluckman PD, Hanson MA, Spencer HG. Predictive adaptive responses and human evolution. Trends Ecol Evol. 2005;20:527–33.

    Article  PubMed  Google Scholar 

  154. Gluckman PD, Hanson MA. Developmental and epigenetic pathways to obesity: an evolutionary-developmental perspective. Int J Obes. 2008;32(Suppl 7):S62–71.

    Article  CAS  Google Scholar 

  155. Bateson P, Barker D, Clutton-Brock T, Deb D, D’Udine B, Foley RA, et al. Developmental plasticity and human health. Nature. 2004;430(22 July):419–21.

    Article  CAS  PubMed  Google Scholar 

  156. Laeng B, Nabil S, Kitaoka A. The eye pupil adjusts to illusory expanding holes. Front Neurosci. 2022;16:877249.

    Article  CAS  Google Scholar 

  157. Wells JCK. Is early development in humans a predictive adaptive response anticipating the adult environment? Trends Ecol Evol. 2006;21(8):424–5.

    Article  CAS  PubMed  Google Scholar 

  158. Arber W. Elements for a theory of molecular evolution. Gene. 2003;317(1):3–11.

    Article  CAS  PubMed  Google Scholar 

  159. Glymour MM, Rudolph KE. Causal inference challenges in social epidemiology: bias, specificity, and imagination. Soc Sci Med. 2016;166:258–65.

    Article  PubMed  Google Scholar 

  160. Kauffman SA. The origins of order: self-organization and selection in evolution. New York: Oxford University Press; 1993.

    Google Scholar 

  161. Csaszar FA. A note on how NK landscapes work. J Organiz Design [Internet]. 2018:7. https://doi.org/10.1186/s41469-018-0039-0.

  162. Hill WD, Davies NM, Ritchie SJ, Skene NG, Bryois J, Bell S, et al. Genome-wide analysis identifies molecular systems and 149 genetic loci associated with income. Nat Communicat. 2019;10(5741).

    Google Scholar 

  163. Rietveld CA, Medland SE, Derringer J, Yang JC, Esko T, Martin NW, et al. GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science. 2013;340(6139):1467–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hill WD, Hagenaars SP, Marioni RE, McIntosh AM, Gale CR, Deary IJ. Molecular genetic contributions to social deprivation and household income in UK Biobank. Curr Biol. 2016;26:3083–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Johnson W, Krueger RF. Genetic effects on physical health: lower at higher income levels. Behav Genet. 2005;35(5):579–90.

    Article  PubMed  Google Scholar 

  166. Engel GL. The need for a new medical model: a challenge for biomedicine. Science. 1977;196:129–36.

    Article  CAS  PubMed  Google Scholar 

  167. Karunamuni N, Imayama I, Goonetilleke D. Pathways to well-being: untangling the causal relationships among biopsychosocial variables. Soc Sci Med. 2021;272:112846.

    Article  PubMed  Google Scholar 

  168. Lindau ST, Laumann EO, Levinson W, Waite LJ. Synthesis of scientific disciplines in pursuit of health: the interactive biopsychosocial model. Perspect Biol Med. 2003;46(3 Suppl):S74–86.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Office for National Statistics. Trend in life expectancy at birth and at age 65 by socio-economic position based on the National Statistics socio-economic classification, England and Wales: 1982–1986 to 2007–2011. London: Office for National Statistics; 2015. Available from: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/bulletins/trendinlifeexpectancyatbirthandatage65bysocioeconomicpositionbasedonthenationalstatisticssocioeconomicclassificationenglandandwales/2015-10-21#the-most-advantaged-males-outlive-the-least-advantaged-females-for-the-first-time-in-2007-to-2011. [Accessed October, 2020].

  170. Sapolsky RM. Behave: the biology of humans at our best and worst. New York: Penguin Press; 2017.

    Google Scholar 

  171. Rolff J. Bateman’s principle and immunity. Proc R Soc Lond. 2002;269:867–72.

    Article  Google Scholar 

  172. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16(10):626–38.

    Article  CAS  PubMed  Google Scholar 

  173. Macintyre S. Inequalities in health: is research gender blind? In: Leon DA, Walt G, editors. Poverty, inequality, and health: international perspectives. Oxford: Oxford University Press; 2001. p. 283–92.

    Google Scholar 

  174. Gardner M, Wiley L, Cooper RS, Hardy R, Nitsch D, Martin-Ruiz C, et al. Gender and telomere length: systematic review and meta-analysis. Exp Gerontol. 2014;51:15–27.

    Article  CAS  PubMed  Google Scholar 

  175. Christensen K, Ørstavik KH, Vaupel JW. The X chromosome and the female survival advantage. Ann N Y Acad Sci. 2001;954:175–83.

    Article  CAS  PubMed  Google Scholar 

  176. RIskin D. Mother nature is trying to kill you: a lively tour through the dark side of the natural world. New York: Simon & Schuster Inc.: A Touchstone Book; 2014.

    Google Scholar 

  177. Min K-J, Lee C-K, Park H-N. The lifespan of Korean eunuchs. Curr Biol. 2012;22(18):R792–3.

    Article  CAS  PubMed  Google Scholar 

  178. Austad SN, Fischer KE. Sex differences in lifespan. Cell Metab. 2016;23(6):1022–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Najman JM, Davey Smith G. The embodiment of class-related and health inequalities: Australian policies. Aust N Z J Public Health. 2000;24(1):3–4.

    Google Scholar 

  180. Power C, Kuh D, Morton S. From developmental origins of adult disease to life course research on adult disease and aging: insights from birth cohort studies. Annu Rev Public Health. 2013;34:7–28.

    Article  PubMed  Google Scholar 

  181. Krieger N. Embodiment: a conceptual glossary for epidemiology. J Epidemiol Community Health. 2005;59:350–5.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Krieger N. Embodying inequality: epidemiologic perspectives. Amityville: Baywood Publishing; 2004.

    Google Scholar 

  183. Woodcock J, Aldred R. Cars, corporations, and commodities: consequences for the social determinants of health. BMC Emerg Themes Epidemiol. 2008;5(4):1–11.

    Google Scholar 

  184. Arzy S, Thut G, Mohr C, Michel CM, Blanke O. Neural basis of embodiment: distinct contributions of temporoparietal junction and extrastriate body area. J Neurosci. 2006;26(31):8074–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kissell JL. Embodiment: an introduction. Theor Med. 2001;22(1):1–4.

    CAS  Google Scholar 

  186. Wilde MH. Why embodiment now? ANS Adv Nurs Sci. 1999;22(2):25–38.

    Article  CAS  PubMed  Google Scholar 

  187. Barker DJP, Martyn CN. The maternal and fetal origins of cardiovascular disease. J Epidemiol Community Health. 1992;46:8–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Barker DJP. The developmental origins of adult disease. J Am Coll Nutr. 2004;23(6):58S–95S.

    Google Scholar 

  189. Krieger N, Davey Smith G. “Bodies count,” and body counts: social epidemiology and embodying inequality. Epidemiol Rev. 2004;26:92–103.

    Article  PubMed  Google Scholar 

  190. Wilcox C. Venomous: how earth’s deadliest creatures mastered biochemistry. New York: Scientific American; 2016.

    Google Scholar 

  191. Krieger N. A glossary for social epidemiology. J Epidemiol Community Health. 2001;55:693–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kuzawa CW, Sweet E. Epigenetics and the embodiment of race: developmental origins of US racial disparities in cardiovascular health. Am J Hum Biol. 2009;21:2–15.

    Article  PubMed  Google Scholar 

  193. Fredrickson BL. What good are positive emotions? Rev Gen Psychol. 1998;2(3):300–19.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Carver CS, Scheier MF. Dispositional optimism. Trends Cogn Sci. 2014;18(6):293–9.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Nes LS, Segerstrom SC. Dispositional optimism and coping: a meta-analytic review. Pers Soc Psychol Rev. 2006;10(3):235–51.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McDowell, I. (2023). Biological Pathways Linking Social Determinants to Health. In: Understanding Health Determinants. Springer, Cham. https://doi.org/10.1007/978-3-031-28986-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28986-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28985-9

  • Online ISBN: 978-3-031-28986-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics