Skip to main content

Pushing the Limits of kT/C Noise in Delta-Sigma Modulators

  • Chapter
  • First Online:
Biomedical Electronics, Noise Shaping ADCs, and Frequency References

Abstract

Thermal noise, which is sampled and aliases in-band in discrete-time systems, limits the achievable performance of switched-capacitor noise-shaping Analog-to-Digital Converters (ADCs). While the performance of such ADCs has advanced significantly over the last 20 years, as quantified by the Schreier figure of merit (FoMS), the theoretical limit of 192 dB remains unchallenged. Over that period, the envelope of ADC performance has advanced from a FoMS of 163 dB, 20 years ago, to 186 dB today, with a rate of advancement, corresponding to ADC performance, which is doubling every 1.6 years. However, this rate of advancement has started to slow in recent years. This chapter will review some of the recent advancements in relation to reducing the thermal noise in switched-capacitor Delta-Sigma Modulators. In addition, this chapter will address many of the challenges associated with breaking the 192 dB FoMS performance barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Kapusta, H. Zhu, C. Lyden, Sampling circuits that break the kT/C thermal noise limit. IEEE J. Solid-State Circuits 49(8), 1694–1701 (2014)

    Article  Google Scholar 

  2. M. Pelgrom, Analog-to-Digital Conversion, 3rd edn. (Springer, 2017)

    Book  Google Scholar 

  3. B. Murmann, The race for the extra decibel: A brief review of current ADC performance trajectories. IEEE L. Solid-State Circuit Magazine 7(3), 58–66 (2015)

    Article  Google Scholar 

  4. Murmann, ADC performance survey 1997–2022 [Online]. http://web.stanford.edu/~murmann/adcsurvey.html

  5. M. Keller, B. Murmann, Y. Manoli, Analog-digital interfaces, NANO-CHIPS 2020 (Springer, 2010), pp. 93–116

    Google Scholar 

  6. B. Murmann, M. Verhelst, Y. Manoli, Analog-to-information conversion, NANO-CHIPS 2030 (Springer, 2020), pp. 275–292

    Google Scholar 

  7. B. Murmann, A/D converter trends: Power dissipation, scaling and digitally assisted architectures (Proc. IEEE Custom Integrated Circuits Conf, 2008), pp. 105–112

    Google Scholar 

  8. C.C. Enz, E.A. Vittoz, CMOS Low-Power Analog Circuit Design (Emerging Technologies: Designing Low Power Digital Systems, 1996), pp. 81–82

    Google Scholar 

  9. E.A. Vittoz, Future of analog in the VLSI environment, vol 2 (IEEE International Symposium on Circuits and Systems, 1990), pp. 1372–1375

    Google Scholar 

  10. B.J. Hosticka, Performance comparison of analog and digital circuits. Proc. IEEE 73(1), 25–29 (1985)

    Article  Google Scholar 

  11. J. Liu, X. Tang, W. Zhao, L. Shen, N. Sun, A 13-bit 0.005-mm2 40-MS/s SAR ADC with kT/C noise cancellation. IEEE J. Solid-State Circuits 55(12), 3260–3270 (2020)

    Article  Google Scholar 

  12. H. Chandrakumar, D. Marković, A 15.2-ENOB 5-kHz BW 4.5- μ W chopped CT ΔΣ -ADC for artifact-tolerant neural recording front ends. IEEE Journal of Solid-State Circuits 53(12), 3470–3483 (2018)

    Article  Google Scholar 

  13. S. Pavan, R. Schreier, G.C. Temes, Understanding delta-sigma data converters, 2nd edn. (IEEE Press, Wiley, 2017)

    Google Scholar 

  14. J. de la Rosa, Sigma-delta converters: practical design guide, 2nd edn. (IEEE Press, Wiley, 2018)

    Book  Google Scholar 

  15. S. Norsworthy, R. Schreier, G. Temes, Delta-sigma data converters: Theory, design and simulation (IEEE Press, Wiley, 1997)

    Google Scholar 

  16. S. Kalogiros, G. Salgado, K. McCarthy, I. O’Connell, Behavioral modeling of low-frequency noise in switched-capacitor circuits using python (2022 20th IEEE Interregional NEWCAS Conference (NEWCAS), 2022), pp. 446–449

    Google Scholar 

  17. K. Martin, A. Sedra, Effects of the op amp finite gain and bandwidth on the performance of switched-capacitor filters. IEEE Trans. Circuit System 28(8), 822–829 (1981)

    Article  Google Scholar 

  18. B. Razavi, Design of analog CMOS integrated circuits, 2nd edn. (McGraw Hill, New York, 2017)

    Google Scholar 

  19. S.-E. Hsieh, C.-C. Hsieh, A 0.4V 13b 270kS/S SAR-ISDM ADC with an opamp-less time-domain integrator (2018 IEEE International Solid – State Circuits Conference – (ISSCC), 2018), pp. 240–242

    Google Scholar 

  20. J. Steensgaard, R. Reay, R. Perry, D. Thomas, G. Tu, G. Reitsma, A 24b 2MS/s SAR ADC with 0.03ppm INL and 106.3dB DR in 180nm CMOS (2022 IEEE International Solid-State Circuits Conference (ISSCC), 2022), pp. 168–170

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyridon Kalogiros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalogiros, S., Salgado, G., Lyden, C., McCarthy, K., O’Connell, I. (2023). Pushing the Limits of kT/C Noise in Delta-Sigma Modulators. In: Harpe, P., Baschirotto, A., Makinwa, K.A. (eds) Biomedical Electronics, Noise Shaping ADCs, and Frequency References. Springer, Cham. https://doi.org/10.1007/978-3-031-28912-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28912-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28911-8

  • Online ISBN: 978-3-031-28912-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics