Skip to main content

Bounded Factorization and the Ascending Chain Condition on Principal Ideals in Generalized Power Series Rings

  • Chapter
  • First Online:
Algebraic, Number Theoretic, and Topological Aspects of Ring Theory

Abstract

We determine necessary and sufficient conditions for broad classes of generalized power series rings to satisfy the ascending chain condition on principal ideals or possess the bounded factorization property. Along the way, we consider when a generalized power series ring is domainlike or (weakly) présimplifiable. As corollaries to our general theorems, we derive new factorization-theoretic results about (Laurent) power series rings and the “large polynomial rings” of Halter-Koch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.D. Anderson and O.A. Al-Mallah. Commutative group rings that are présimplifiable or domainlike. J. Algebra Appl., 16:1750019, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  2. D.D. Anderson, D.F. Anderson, and M. Zafrullah. Factorization in integral domains. J. Pure Appl. Algebra, 69:1–19, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  3. D.D. Anderson and S. Chun. Associate elements in commutative rings. Rocky Mountain J. Math., 44:717–731, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  4. D.D. Anderson and A. Ganatra. Bounded factorization rings. Comm. Algebra, 35:3892–3903, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  5. D.D. Anderson and J.R. Juett. Long length functions. J. Algebra, 426:327–343, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  6. D.D. Anderson and J.R. Juett. Length functions in commutative rings with zero divisors. Comm. Algebra, 45:1584–1600, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  7. D.D. Anderson, J.R. Juett, and C.P. Mooney. Factorization of ideals. Comm. Algebra, 47:1742–1772, 2019.

    Article  MathSciNet  MATH  Google Scholar 

  8. D.D. Anderson and S. Valdes-Leon. Factorization in commutative rings with zero divisors. Rocky Mountain J. Math., 26:439–480, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  9. D.D. Anderson and S. Valdes-Leon. Factorization in commutative rings with zero divisors, II. In D.D. Anderson, editor, Factorization in integral domains, pages 197–219. Marcel Dekker, 1997.

    Google Scholar 

  10. D.F. Anderson and F. Gotti. Bounded and finite factorization domains. In A. Badawi and J. Coykendall, editors, Rings, monoids, and module theory. Springer-Verlag, Singapore, 2022.

    Google Scholar 

  11. M. Axtell, S.J. Forman, and J. Stickles. Properties of domainlike rings. Tamkang J. Math., 40:151–164, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  12. N.P. Aylesworth and J.R. Juett. Generalized power series with a limited number of factorizations. J. Commut. Algebra, 14:471–507, 2022.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Baer. Radical ideals. Amer. J. Math., 65:537–568, 1943.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Benhissi and M. Eljeri. MC-extensions: examples, zero-divisors graph, and colorability. Comm. Algebra, 40:104–124, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  15. G.M. Benkart, A.M. Gaglione, W.D. Joyner, M.E. Kidwell, M.D. Meyerson, D. Spellman, and W.P. Wardlaw. Principal ideals and associate rings. JP J. Algebra Number Theory Appl., 2:181–193, 2002.

    MathSciNet  MATH  Google Scholar 

  16. A. Bouvier. Anneaux présimplifiables et anneaux atomiques. C.R. Acad. Sci. Paris, 272:992–994, 1971.

    MathSciNet  MATH  Google Scholar 

  17. A. Bouvier. Anneaux présimplifiables. C.R. Acad. Sci. Paris, 274:A1605–A1607, 1972.

    MATH  Google Scholar 

  18. A. Bouvier. Résultats nouveaux sur les anneaux présimplifiables. C.R. Acad. Sci. Paris, 275:A955–A957, 1972.

    MATH  Google Scholar 

  19. A. Bouvier. Anneaux présimplifiables. Rev. Roumaine Math. Pures Appl., 19:713–724, 1974.

    MathSciNet  MATH  Google Scholar 

  20. E.D. Cashwell and C.J. Everett. Formal power series. Pacific J. Math., 13:45–64, 1963.

    Article  MathSciNet  MATH  Google Scholar 

  21. S.T. Chapman, F. Gotti, and M. Gotti. Factorization invariants of Puiseux monoids generated by geometric sequences. Comm. Algebra, 48:380–396, 2020.

    Article  MathSciNet  MATH  Google Scholar 

  22. C.C. Cheng, J.H. McKay, J. Towber, S.S. Wang, and D.L. Wright. Reversion of power series and the extended Raney coefficients. Trans. Amer. Math. Soc., 349:1769–1782, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  23. R.A.C. Edmonds and J.R. Juett. Associates, irreducibility, and bounded factorization in monoid rings with zero divisors. Comm. Algebra, 49:1836–1860, 2021.

    Article  MathSciNet  MATH  Google Scholar 

  24. G.A. Elliott and P. Ribenboim. Fields of generalized power series. Arch. Math., 54:365–371, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Frohn. A counterexample concerning ACCP in power series rings. Comm. Algebra, 30:2961–2966, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Frohn. Modules with n-acc and the acc on certain types of annihilators. J. Algebra, 256:467–483, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Frohn. ACCP rises to the polynomial ring if the ring has only finitely many associated primes. Comm. Algebra, 32:1213–1218, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Geroldinger and F. Halter-Koch. Non-Unique Factorizations: Algebraic, Combinatorial and Analytic Theory, volume 278 of Pure and Applied Mathematics (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2006.

    Google Scholar 

  29. R. Gilmer. Multiplicative Ideal Theory, Queen’s Papers in Pure and Appl. Math., vol. 90. Queen’s University, Kingston, Ontario, 1992.

    Google Scholar 

  30. R. Gilmer and T. Parker. Divisibility properties in semigroup rings. Michigan Math. J., 21:65–86, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Gotti. Systems of sets of lengths of Puiseux monoids. J. Pure Appl. Algebra, 223:1856–1868, 2019.

    Article  MathSciNet  MATH  Google Scholar 

  32. F. Halter-Koch. On the algebraic and arithmetical structure of generalized polynomial algebras. Rend. Semin. Mat. Univ. Padova, 90:121–140, 1993.

    MathSciNet  MATH  Google Scholar 

  33. W.J. Heinzer and D.C. Lantz. Commutative rings with ACC on n-generated ideals. J. Algebra, 80:261–278, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  34. W.J. Heinzer and D.C. Lantz. ACCP in polynomial rings: a counterexample. Proc. Amer. Math. Soc., 121:975–977, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Kim. Factorization in monoid domains. Comm. Algebra, 29:1853–1869, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  36. P. Ribenboim. Generalized power series rings. In Lattices, semigroups, and universal algebra (Lisbon, 1988), pages 271–277. Plenum, New York, 1990.

    Google Scholar 

  37. P. Ribenboim. Rings of generalized power series: nilpotent elements. Abh. Math. Sem. Univ. Hamburg, 61:15–33, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  38. P. Ribenboim. Noetherian rings of generalized power series. J. Pure Appl. Algebra, 79:293–312, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  39. P. Ribenboim. Rings of generalized power series II: Units and zero-divisors. J. Algebra, 168:71–89, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  40. P. Ribenboim. Special properties of rings of generalized power series. J. Algebra, 173:566–586, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  41. P. Ribenboim. Semisimple rings and von Neumann regular rings of generalized power series. J. Algebra, 198:327–338, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  42. G. Xin. A fast algorithm for MacMahon’s partition analysis. Electron. J. Combin., 11, 2004.

    Google Scholar 

Download references

Acknowledgements

On the occasion of Professor Dan Anderson’s retirement, we would like to acknowledge the mentorship that he has provided us and many others throughout his career. We would also like to acknowledge the anonymous referee for carefully reading our manuscript and offering several corrections/clarifications to our writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Park Mooney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bruch, H.E., Juett, J.R., Mooney, C.P. (2023). Bounded Factorization and the Ascending Chain Condition on Principal Ideals in Generalized Power Series Rings. In: Chabert, JL., Fontana, M., Frisch, S., Glaz, S., Johnson, K. (eds) Algebraic, Number Theoretic, and Topological Aspects of Ring Theory . Springer, Cham. https://doi.org/10.1007/978-3-031-28847-0_9

Download citation

Publish with us

Policies and ethics