Skip to main content

Mineral Informatics: Origins

  • Chapter
  • First Online:
Celebrating the International Year of Mineralogy

Abstract

As the most robust, information rich artifacts available for analysis and exploration, minerals provide us insights about planetary origins and evolutions. The volume, variety, and velocity of mineral data, and development to extract patterns from this data have increased in past decades. We are at the precipice of a paradigm shift and “Mineral Informatics” efforts provide a roadmap to synthesize and coordinate data driven research in mineralogy and in multidisciplinary studies that use mineral data. Mineral informatics includes the study of mineral data at every step of the information cycle, starting with best practices and strategies for optimal creation, collection and compilation of data resources, the development of algorithms, models, pipelines, and visualizations to present and extract key patterns from mineral data, and accurate interpretation of the results from these algorithms and models to make interdisciplinary scientific discoveries. In this chapter, we describe the history of data driven research in mineralogy, and the key events that led to the development and adoption of mineral informatics in the scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.usgs.gov/centers/national-minerals-information-center/historical-statistics-mineral-and-material-commodities.

  2. 2.

    https://iamg.org/awards-and-honours/felix-chayes-prize-for-excellence-in-research-in-mathematical-petrology/.

  3. 3.

    Https://www.mindat.org/a/history.

  4. 4.

    Http://rruff.geo.arizona.edu/ams/amcsd.php.

  5. 5.

    Https://rruff.info/.

  6. 6.

    Https://rruff.info/about/about_general.php.

  7. 7.

    Http://rruff.info/ima.

  8. 8.

    Https://mindat.org.

  9. 9.

    Http://rruff.info/evolution.

  10. 10.

    https://www.ands.org.au/working-with-data/citation-and-identifiers/data-citation.

  11. 11.

    https://www.ands.org.au/working-with-data/citation-and-identifiers/data-citation.

References

  • Acharya T, Ray AK (2010) Image processing: principles and applications. Wiley, Hoboken

    Google Scholar 

  • Achilles CN, Downs RT, Ming DW, Rampe EB, Morris RV, Treiman AH, Morrison SM, Blake DF, Vaniman DT, Ewing RC, Chipera SJ, Yen AS, Bristow TF, Ehlmann BL, Gellert R, Hazen RM, Fendrich KV, Craig PI, Grotzinger JP, Des Marais DJ, Farmer JD, Sarrazin PC, Morookian JM (2017) Mineralogy of an active eolian sediment from the Namib dune, Gale crater, Mars. J Geophys Res Planets 122:2344–2361. https://doi.org/10.1002/2017JE005262

    Article  Google Scholar 

  • Acosta ICC, Khodadadzadeh M, Tusa L, Ghamisi P, Gloaguen R (2019) A machine learning framework for drill-core mineral mapping using hyperspectral and high-resolution mineralogical data fusion. IEEE J Sel Top Appl Earth Obs Remote Sens 12:4829–4842. https://doi.org/10.1109/JSTARS.2019.2924292

    Article  Google Scholar 

  • Agarwal S, Tosi N, Breuer D, Padovan S, Kessel P, Montavon G (2020) A machine-learning-based surrogate model of Mars’ thermal evolution. Geophys J Int 222:1656–1670

    Google Scholar 

  • Agricola G, Bandy MC, Bandy JA (1955) De natura fossilium = (Textbook of mineralogy). Geological Society of America, New York

    Google Scholar 

  • Alix G, Lymer E, Zhang G, Daly M, Gao X (2022) A comparative performance of machine learning algorithms on laser-induced breakdown spectroscopy data of minerals. J Chemom n/a:e3400. https://doi.org/10.1002/cem.3400

  • Alpert SP, Ebel DS, Weisberg MK, Neiman JR (2021) Petrology of the opaque assemblages in unequilibrated ordinary chondrites. Meteorit Planet Sci 56:311–330. https://doi.org/10.1111/maps.13619

    Article  Google Scholar 

  • Alsemgeest J, Pavlov SG, Böttger U, Weber I (2022) Effect of LIBS-induced alteration on subsequent Raman analysis of iron sulfides. ACS Earth Space Chem 6:2167–2179. https://doi.org/10.1021/acsearthspacechem.2c00051

    Article  Google Scholar 

  • Anthony JW, Bideaux RA, Bladh KW, Nichols MC (2003) Handbook of Mineralogy. Mineralogical Society of America, Chantilly, VA

    Google Scholar 

  • Ayler MF (1963) Statistical methods applied to mineral exploration. Am Min Congr J 49:41–45

    Google Scholar 

  • Ball MR, Einsle JF, Andrew M, McNamara DD, Taylor RJ, Harrison RJ (2019) Projecting into the third dimension: 3D ore mineralogy via machine learning of automated mineralogy and X-ray microscopy. Microsc Microanal 25:410–411

    Google Scholar 

  • Barringer DM (1897) A description of minerals of commercial value: a practical reference-book. Wiley

    Google Scholar 

  • Beaty DW, Grady MM, McSween HY, Sefton-Nash E, Carrier BL, Altieri F, Amelin Y, Ammannito E, Anand M, Benning LG, Bishop JL, Borg LE, Boucher D, Brucato JR, Busemann H, Campbell KA, Czaja AD, Debaille V, Des Marais DJ, Dixon M, Ehlmann BL, Farmer JD, Fernandez-Remolar DC, Filiberto J, Fogarty J, Glavin DP, Goreva YS, Hallis LJ, Harrington AD, Hausrath EM, Herd CDK, Horgan B, Humayun M, Kleine T, Kleinhenz J, Mackelprang R, Mangold N, Mayhew LE, McCoy JT, McCubbin FM, McLennan SM, Moser DE, Moynier F, Mustard JF, Niles PB, Ori GG, Raulin F, Rettberg P, Rucker MA, Schmitz N, Schwenzer SP, Sephton MA, Shaheen R, Sharp ZD, Shuster DL, Siljeström S, Smith CL, Spry JA, Steele A, Swindle TD, ten Kate IL, Tosca NJ, Usui T, Van Kranendonk MJ, Wadhwa M, Weiss BP, Werner SC, Westall F, Wheeler RM, Zipfel J, Zorzano MP (2019) The potential science and engineering value of samples delivered to Earth by Mars sample return. Meteorit Planet Sci 54:S3–S152. https://doi.org/10.1111/maps.13242

    Article  Google Scholar 

  • Berlanga G, Gupta A, Pan J, Robles A (2021) Lightweight artificial neural networks for rock and mineral classification on remote planetary surfaces. 2021:P55C-1936

    Google Scholar 

  • Bermanec M, Williams JR, Hazen RM, Morrison SM (2021) Creating a comprehensive, standardized dataset of tourmaline geochemical analyses integrating localities and petrogenesis. J Geosci 63:77–98

    Google Scholar 

  • Bersani D, Lottici PP (2010) Applications of Raman spectroscopy to gemology. Anal Bioanal Chem 397:2631–2646. https://doi.org/10.1007/s00216-010-3700-1

    Article  Google Scholar 

  • Bhatt M, Wöhler C, Grumpe A, Hasebe N, Naito M (2019) Global mapping of lunar refractory elements: multivariate regression versus machine learning. Astron Astrophys 627:A155

    Google Scholar 

  • Bish D, Blake D, Vaniman D, Sarrazin P, Bristow T, Achilles C, Dera P, Chipera S, Crisp J, Downs RT, Farmer J, Gailhanou M, Ming D, Morookian JM, Morris R, Morrison SM, Rampe E, Treiman A, Yen A (2014) The first X-ray diffraction measurements on Mars. IUCrJ 1:514–522. https://doi.org/10.1107/S2052252514021150

    Article  Google Scholar 

  • Bish DL, Blake DF, Vaniman DT, Chipera SJ, Morris RV, Ming DW, Treiman AH, Sarrazin P, Morrison SM, Downs RT, Achilles CN, Yen AS, Bristow TF, Crisp JA, Morookian JM, Farmer JD, Rampe EB, Stolper EM, Spanovich N (2013) X-ray diffraction results from mars science laboratory: mineralogy of rocknest at Gale crater. Science 341:1238932–1238932. https://doi.org/10.1126/science.1238932

    Article  Google Scholar 

  • Blake D, Hazen RM, Morrison SM, Bristow TS, Sarrazin P, Zacny K, Rampe EB, Downs RT, Yen A, Ming DW, Morris RV, Vaniman DT, Treiman A, Achilles CN, Craig PI, Marais DJD, Tu V, Castle N, Thorpe MT (2021a) In-situ crystallographic investigations of solar systems in the next decade. Bull AAS 53. https://doi.org/10.3847/25c2cfeb.c5efb6c2

  • Blake D, Zacny K, Bristow T, Morrison S, Sarrazin P, Rampe E, Tu V, Thorpe MT, Payre V, Smith R, Scudder N, Bedford CC, Dehouck E (2021b) MER-class rover investigations of mars in the coming decades. Bull AAS 53. https://doi.org/10.3847/25c2cfeb.a7226c13

  • Blake DF, Sarrazin P, Bristow TF, Treiman AH, Zacny K, Morrison S (2021c) Progress in the development of CheMin-V, a definitive mineralogy instrument for landed science on venus. In: 19th meeting of the Venus exploration analysis group (VEXAG). p 8032

    Google Scholar 

  • Blake D, Vaniman D, Achilles C, Anderson R, Bish D, Bristow T, Chen C, Chipera S, Crisp J, Des Marais D, Downs RT, Farmer J, Feldman S, Fonda M, Gailhanou M, Ma H, Ming DW, Morris RV, Sarrazin P, Stolper E, Treiman A, Yen A (2012) Characterization and calibration of the CheMin mineralogical instrument on Mars Science Laboratory. Space Sci Rev 170:341–399. https://doi.org/10.1007/s11214-012-9905-1

    Article  Google Scholar 

  • Blake DF, Bristow T, Sarrazin P, Zacny K, Downs RT, Lafuente B, Treiman AH (2020a) In situ mineralogical analysis of the Venus surface with x-ray diffraction (XRD). pp P026–0003

    Google Scholar 

  • Blake DF, Treiman A, Sarrazin P, Bristow TS, Downs R, Yen A, Zacny K (2020b) CheMin-V: a definitive mineralogy instrument for landed Venus science. D.F. In: 51st Lunar and planetary science conference. p 1814

    Google Scholar 

  • Blake DF, Morris RV, Kocurek G, Morrison SM, Downs RT, Bish D, Ming DW, Edgett KS, Rubin D, Goetz W, Madsen MB, Sullivan R, Gellert R, Campbell I, Treiman AH, McLennan SM, Yen AS, Grotzinger J, Vaniman DT, Chipera SJ, Achilles CN, Rampe EB, Sumner D, Meslin PY, Maurice S, Forni O, Gasnault O, Fisk M, Schmidt M, Mahaffy P, Leshin LA, Glavin D, Steele A, Freissinet C, Navarro-González R, Yingst RA, Kah LC, Bridges N, Lewis KW, Bristow TF, Farmer JD, Crisp JA, Stolper EM, Des Marais DJ, Sarrazin P (2013) Curiosity at Gale Crater, Mars: characterization and analysis of the rocknest sand shadow. Science 341:1239505. https://doi.org/10.1126/science.1239505

    Article  Google Scholar 

  • Blake F, Sarrazin P, Bristow TS, Treiman AH, Zacny K, Morrison S (2019) CheMin-V: a definitive mineralogy instrument for landed science on Venus. D. In: 17th meeting of the venus exploration analysis group (VEXAG). p 8029/2193

    Google Scholar 

  • Boujibar A, Howell S, Zhang S, Hystad G, Prabhu A, Liu N, Stephan T, Narkar S, Eleish A, Morrison SM (2021) Cluster analysis of presolar silicon carbide grains: evaluation of their classification and astrophysical implications. Astrophys J Lett 907:L39

    Google Scholar 

  • Boujibar A, Zhang S, Howell S, Prabhu A, Narkar S, Hystad G, Eleish A, Morrison SM, Hazen R, Nittler LR, Boujibar A, Zhang S, Howell S, Prabhu A, Narkar S, Hystad G, Eleish A, Morrison SM, Hazen R, Nittler LR (2019) Natural kind clustering of presolar silicon carbides and its astrophysical implications. AGUFM 2019:V11C – V12

    Google Scholar 

  • Bradley DC (2011) Secular trends in the geologic record and the supercontinent cycle. Earth-Sci Rev 108:16–33

    Google Scholar 

  • Breitenfeld LB, Rogers AD, Glotch TD, Hamilton VE, Christensen PR, Lauretta DS, Gemma ME, Howard KT, Ebel DS, Kim G, Kling AM, Nekvasil H, DiFrancesco N (2021) Machine learning mid-infrared spectral models for predicting modal mineralogy of CI/CM chondritic asteroids and Bennu. J Geophys Res Planets 126:e2021JE007035. https://doi.org/10.1029/2021JE007035

  • Brodaric B, Richard SM (2020) The geoscience ontology. In: AGU fall meeting abstracts. pp IN030–07

    Google Scholar 

  • Bryan WB, Finger LW, Chayes F (1969) Estimating proportions in petrographic mixing equations by least-squares approximation. Science 163:926–927. https://doi.org/10.1126/science.163.3870.926

    Article  Google Scholar 

  • Buongiorno J, Fullerton K, Rogers T, Giovannelli D, DeMoor M, Barry P, Schrenk M, Lloyd KG, Morrison S, Hazen R (2019) Interactions between microbial communities and their geologic environment at the Costa Rica active margin. In: Goldschmidt annual meeting

    Google Scholar 

  • Chakouri M, Lhissou R, El Harti A, El Hachimi J, Jellouli A (2020) Geological and mineralogical mapping in moroccan central jebilet using multispectral and hyperspectral satellite data and machine learning. Int J Adv Trends Comput Sci Eng

    Google Scholar 

  • Chayes F (1960) On correlation between variables of constant sum. J Geophys Res 65:4185–4193. https://doi.org/10.1029/JZ065i012p04185

    Article  Google Scholar 

  • Chayes F (1985) IGBADAT: a world data base for igneous petrology. Episodes 8:245–251. https://doi.org/10.18814/epiiugs/1985/v8i4/004

  • Chayes F (1975) On the need, design, and prospects for an electronic information system serving igneous petrology. J Int Assoc Math Geol 7:363–371. https://doi.org/10.1007/BF02080495

    Article  Google Scholar 

  • Chayes F (1977a) On ways of making information system software available. Comput Geosci 3:449–452. https://doi.org/10.1016/0098-3004(77)90020-6

    Article  Google Scholar 

  • Chayes F (1977b) Use of correlation statistics with rubidium-strontium systematics. Science 196:1234–1235. https://doi.org/10.1126/science.196.4295.1234

    Article  Google Scholar 

  • Chayes F (1983) A Fortran decoder and evaluator for use at operation time. Comput Geosci 9:537–549. https://doi.org/10.1016/0098-3004(83)90022-5

    Article  Google Scholar 

  • Chayes F, Kruskal W (1966) An Approximate statistical test for correlations between proportions. J Geol 74:692–702. https://doi.org/10.1086/627204

    Article  Google Scholar 

  • Cheng Q (2021) Fractal calculus and analysis for characterizing geoanomalies caused by singular geological processes. J Earth Sci 32:276–278

    Google Scholar 

  • Cheng Q, Agterberg F (2020) Fractal geometry in geosciences. In: Daya Sagar BS, Cheng Q, McKinley J, Agterberg F (eds) Encyclopedia of mathematical geosciences. Springer International Publishing, Cham, pp 1–24

    Google Scholar 

  • Chiama K, Rutledge R, Gabor M, Lupini I, Hazen RM, Zhang S, Boujibar A (2020) Garnet: a comprehensive, standardized, geochemical database incorporating locations and paragenesis. In: Geological Society of America Abstracts with Programs

    Google Scholar 

  • Chipera SJ, Bish DL (2013) Fitting full X-ray diffraction patterns for quantitative analysis: a method for readily quantifying crystalline and disordered phases. Adv Mater Phys Chem 3:47–53. https://doi.org/10.4236/ampc.2013.31A007

    Article  Google Scholar 

  • Clark M, Ostroverkhova A, Prabhu A, Morrison SM (2022) The creation of a multivariable data set for use in machine learning classification of ungrouped chondritic meteorites. In: AGU—fall meeting. pp V42A-06

    Google Scholar 

  • Cleland CE, Hazen RM, Morrison SM (2021) Historical natural kinds and mineralogy: systematizing contingency in the context of necessity. Proc Natl Acad Sci USA 118. https://doi.org/10.1073/PNAS.2015370118

  • Cochrane CJ, Blacksberg J (2015) A fast classification scheme in Raman spectroscopy for the identification of mineral mixtures using a large database with correlated predictors. IEEE Trans Geosci Remote Sens 53:4259–4274. https://doi.org/10.1109/TGRS.2015.2394377

    Article  Google Scholar 

  • Cone K, Palin R, Singha K (2020a) Machine learning approaches in lunar mantle heterogeneity investigations. Geology

    Google Scholar 

  • Cone KA, Palin RM, Singha K (2020b) Unsupervised machine learning with petrological database ApolloBasaltDB reveals complexity in lunar basalt major element oxide and mineral distribution patterns. Icarus 346:113787. https://doi.org/10.1016/j.icarus.2020.113787

    Article  Google Scholar 

  • Coulomb R, Dietz S, Godunova M, Nielsen TB (2015) Critical minerals today and in 2030: an analysis for OECD countries

    Google Scholar 

  • Dana JD (1837) A system of mineralogy. Durrie & Peck and Herrick & Noyes, New Haven, CT, USA

    Google Scholar 

  • Data Citation Synthesis Group (2014) Joint declaration of data citation principles. Force11

    Google Scholar 

  • Downs RT (2006) The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. In: Program and abstracts of the 19th General meeting of the international mineralogical association in Kobe, Japan, 2006

    Google Scholar 

  • Downs RT, Hall-Wallace M (2003) The American mineralogist crystal structure database. Am Mineral 88:247–250. https://doi.org/10.5860/choice.43sup-0302

    Article  Google Scholar 

  • Drozdovskiy I, Ligeza G, Jahoda P, Franke M, Lennert P, Vodnik P, Payler SJ, Kaliwoda M, Pozzobon R, Massironi M, Turchi L, Bessone L, Sauro F (2020) The PANGAEA mineralogical database. Data Brief 31:105985. https://doi.org/10.1016/j.dib.2020.105985

  • Eake BE (1989) Statistics in petrology. Petrology. Kluwer Academic Publishers, Dordrecht, pp 547–549

    Google Scholar 

  • Einsle JF, Eggeman AS, Martineau BH, Saghi Z, Collins SM, Blukis R, Bagot PA, Midgley PA, Harrison RJ (2018) Nanomagnetic properties of the meteorite cloudy zone. Proc Natl Acad Sci 115:E11436–E11445

    Google Scholar 

  • Einsle JF, Harrison RJ, Johnstone D, Martineau B, Collins SM, Buisman I, Saghi Z, Eggeman A, Piotrowski AM, Kirschvink JL (2016) Multi-scale and multi-dimensional mineralogical mapping using machine learning. pp MR13A-2379

    Google Scholar 

  • Europa Study Team (2012) Europa study 2012 report Europa Lander Mission

    Google Scholar 

  • Ewing RC (1976) A numerical approach toward the classification of complex, orthorhombic, rare-earth, AB 2 O 6 -type Nb-Ta-Ti oxides. Can Mineral 14:111–119

    Google Scholar 

  • Ezad IS, Einsle JF, Dobson DP, Hunt SA, Thomson AR, Brodholt JP (2022) Improving grain size analysis using computer vision techniques and implications for grain growth kinetics. Am Mineral J Earth Planet Mater 107:262–273

    Google Scholar 

  • Fairfield J, Shtein H (2014) Big data, big problems: emerging issues in the ethics of data science and journalism. J Mass Media Ethics 29:38–51. https://doi.org/10.1080/08900523.2014.863126

    Article  Google Scholar 

  • Fischer G, Herrmann T (2011) Socio-technical systems: a meta-design perspective. Int J Sociotechnology Knowl Dev 3:1–33. https://doi.org/10.4018/jskd.2011010101

    Article  Google Scholar 

  • Fortier SM, Nassar NT, Graham GE, Hammarstrom JM, Day WC, Mauk JL, Seal RR II (2022) USGS critical minerals review: 2021. Min Eng 74:34

    Google Scholar 

  • Fu H, Cheng Q, Jing L, Ge Y (2021) Deep learning-based hydrothermal alteration mapping using GaoFen-5 hyperspectral data in the Duolong Ore District, Western Tibet, China. J Appl Remote Sens 15:044512

    Google Scholar 

  • Fullerton K, Schrenk M, Yucel M, Manini E, Marco B, Rogers T, Fattorini D, di Carlo M, D’Errico G, Regoli F, Nakagawa M, Vetriani C, Smedile F, Ramírez C, Miller H, Morrison S, Buongiorno J, Jessen G, Steen A, Martinez M, de Moor JM, Barry P, Giovannelli D, Lloyd K (2019) Plate tectonics drive deep biosphere microbial community structure. https://doi.org/10.31223/OSF.IO/GYR7N

  • Geng X (2016) Label distribution learning. IEEE Trans Knowl Data Eng 28:1734–1748. https://doi.org/10.1109/TKDE.2016.2545658

    Article  Google Scholar 

  • George Mason University, Hindrichs AS, Eleazer K, Lui T, Williams J, Nord J, Gregory D, Morrison S, Hazen RM, Ostroverkhova A (2022) Oxide spinel and data-driven discovery: a comprehensive mineralogical and geochemical data resource, incorporating composition, location, and paragenesis. p 375662

    Google Scholar 

  • Golden J, McMillan M, Downs RT, Hystad G, Goldstein I, Stein HJ, Zimmerman A, Sverjensky DA, Armstrong JT, Hazen RM (2013) Rhenium variations in molybdenite (MoS2): Evidence for progressive subsurface oxidation. Earth Planet Sci Lett 366:1–5. https://doi.org/10.1016/j.epsl.2013.01.034

    Article  Google Scholar 

  • Golden JJ (2019) Mineral evolution database: data model for mineral age associations. University of Arizona

    Google Scholar 

  • Golden JJ, Pires AJ, Hazen RM, Downs RT, Ralph J, Meyer M (2016) Building the mineral evolution database: implications for future big data analysis. p 286024

    Google Scholar 

  • Goldschmidt V (1913) Altas der Krystallformen. Carl Winters Universitäts- buchhandlung, Heidelberg, Germany

    Google Scholar 

  • Goldstein S, Lehnert K, Hofmann A (2014) Requirements for the Publication of Geochemical Data

    Google Scholar 

  • Gregory D, Cracknell M, Figueroa M, McGoldrick P, Large R, Steadman J, Fox N, Baker M, Belousov I, Kuh S, Lyons T (2019) Random Forests classification of ore deposit type based on pyrite trace element analyses. GACMAC

    Google Scholar 

  • Grew ES, Hazen RM (2014) Beryllium mineral evolution. Am Mineral 99:999–1021. https://doi.org/10.2138/am.2014.4675

  • Grew ES, Hystad G, Hazen RM, Krivovichev SV, Gorelova LA (2017) How many boron minerals occur in Earth’s upper crust? Am Mineral 102:1573–1587. https://doi.org/10.2138/am-2017-5897

    Article  Google Scholar 

  • Grew ES, Hystad G, Toapanta MPC, Eleish A, Ostroverkhova A, Golden J, Hazen RM (2019) Lithium mineral evolution and ecology: comparison with boron and beryllium. Eur J Mineral 31:755–774. https://doi.org/10.1127/ejm/2019/0031-2862

    Article  Google Scholar 

  • Grew ES, Krivovichev SV, Hazen RM, Hystad G (2016) Evolution of structural complexity in boron minerals. Can Mineral 54:125–143. https://doi.org/10.3749/canmin.1500072

    Article  Google Scholar 

  • Hand K, Murray A, Garvin J, Brinckerhoff W, Christner B, Edgett K, Hoehler T (2017) Report of the Europa lander science definition team: jet propulsion laboratory. Calif Inst Technol

    Google Scholar 

  • Hanson B, Kerstin Lehnert KL, Cutcher-Gershenfeld J (2015) Committing to publishing data in the earth and space sciences. Eos 96. https://doi.org/10.1029/2015EO022207

  • Hazen R (2015) Mineral evolution: the great oxidation event, and the rise of colorful minerals. Mineral Rec 46:34

    Google Scholar 

  • Hazen RM (2014) Data-driven abductive discovery in mineralogy. Am Mineral 99:2165–2170. https://doi.org/10.2138/am-2014-4895

    Article  Google Scholar 

  • Hazen RM (2019) An evolutionary system of mineralogy: proposal for a classification of planetary materials based on natural kind clustering. Am Mineral 104:810–816. https://doi.org/10.2138/am-2019-6709CCBYNCND

    Article  Google Scholar 

  • Hazen RM, Bekker A, Bish DL, Bleeker W, Downs RT, Farquhar J, Ferry JM, Grew ES, Knoll AH, Papineau D, Ralph JP, Sverjensky DA, Valley JW (2011) Needs and opportunities in mineral evolution research. Am Mineral 96:953–963. https://doi.org/10.2138/am.2011.3725

    Article  Google Scholar 

  • Hazen RM, Downs RT, Eleish A, Fox P, Gagné OC, Golden JJ, Grew ES, Hummer DR, Hystad G, Krivovichev SV, Li C, Liu C, Ma X, Morrison SM, Pan F, Pires AJ, Prabhu A, Ralph J, Runyon SE, Zhong H (2019) Data-driven discovery in mineralogy: recent advances in data resources, analysis, and visualization. Engineering 5:397–405. https://doi.org/10.1016/j.eng.2019.03.006

    Article  Google Scholar 

  • Hazen RM, Downs RT, Kah L, Sverjensky D (2013a) Carbon mineral evolution. Rev Mineral Geochem 75:79–107. https://doi.org/10.2138/rmg.2013.75.4

  • Hazen RM, Downs RT, Kah L, Sverjensky D (2013b) 4. Carbon mineral evolution. Carbon Earth 79–108. https://doi.org/10.1515/9781501508318-006

  • Hazen RM, Sverjensky DA, Azzolini D, Bish DL, Elmore SC, Hinnov L, Milliken RE (2013c) Clay mineral evolution. Am Mineral 98:2007–2029

    Google Scholar 

  • Hazen RM, Ewing RC, Sverjensky DA (2009) Evolution of uranium and thorium minerals. Am Mineral 94:1293–1311

    Google Scholar 

  • Hazen RM, Morrison SM, Prabhu A (2023) The evolution of mineral evolution. In: Bindi L, Giuseppe C (eds) Celebrating the international year of mineralogy. Springer, Cham

    Google Scholar 

  • Hazen RM, Golden J, Downs RT, Hystad G, Grew ES, Azzolini D, Sverjensky DA (2012) Mercury (Hg) mineral evolution: a mineralogical record of supercontinent assembly, changing ocean geochemistry, and the emerging terrestrial biosphere. Am Mineral 97:1013–1042. https://doi.org/10.2138/am.2012.3922

    Article  Google Scholar 

  • Hazen RM, Grew ES, Downs RT, Golden J, Hystad G (2015a) Mineral ecology: chance and necessity in the mineral diversity of terrestrial planets. Can Mineral 53:295–324. https://doi.org/10.3749/canmin.1400086

    Article  Google Scholar 

  • Hazen RM, Hystad G, Downs RT, Golden JJ, Pires AJ, Grew ES (2015b) Earth’s “missing” minerals. Am Mineral 100:2344–2347. https://doi.org/10.2138/am-2015-5417

    Article  Google Scholar 

  • Hazen RM, Hummer DR, Hystad G, Downs RT, Golden JJ (2016) Carbon mineral ecology: predicting the undiscovered minerals of carbon. Am Mineral 101:889–906. https://doi.org/10.2138/am-2016-5546

    Article  Google Scholar 

  • Hazen RM, Hystad G, Golden JJ, Hummer DR, Liu C, Downs RT, Morrison SM, Ralph J, Grew ES (2017) Cobalt mineral ecology. Am Mineral 102:108–116. https://doi.org/10.2138/am-2017-5798

  • Hazen RM, Liu X-M, Downs RT, Golden J, Pires AJ, Grew ES, Hystad G, Estrada C, Sverjensky DA (2014a) Mineral evolutionepisodic metallogenesis, the supercontinent cycle, and the coevolving geosphere and biosphere. In: Building exploration capability for the 21st century. society of economic geologists

    Google Scholar 

  • Hazen RM, Liu X-M, Downs RT, Golden JJ, Pires AJ, Grew ES, Hystad G, Estrada C, Sverjensky DA (2014b) Mineral evolution: episodic metallogenesis, the supercontinent cycle, and the coevolving geosphere and biosphere. Soc Econ Geol Spec Publ 18:1–15

    Google Scholar 

  • Hazen RM, Morrison SM (2020a) An evolutionary system of mineralogy, Part V: Aqueous and thermal alteration of planetesimals (~4565 to 4550 Ma). Am Mineral. https://doi.org/10.2138/am-2021-7760

    Article  Google Scholar 

  • Hazen RM, Morrison SM (2020b) An evolutionary system of mineralogy, part I: stellar mineralogy (>13 to 4.6 Ga). Am Mineral 105:627–651. https://doi.org/10.2138/am-2020-7173

    Article  Google Scholar 

  • Hazen RM, Morrison SM (2022) On the paragenetic modes of minerals: a mineral evolution perspective. Am Mineral 107:1262–1287. https://doi.org/10.2138/am-2022-8099

    Article  Google Scholar 

  • Hazen RM, Morrison SM, Krivovichev SV, Downs RT (2022) Lumping and splitting: toward a classification of mineral natural kinds. Am Mineral 107:1288–1301. https://doi.org/10.2138/am-2022-8105

    Article  Google Scholar 

  • Hazen RM, Morrison SM, Prabhu A (2021) An evolutionary system of mineralogy. Part III: Primary chondrule mineralogy (4566 to 4561 Ma). Am Mineral 106:325–350. https://doi.org/10.2138/am-2020-7564

    Article  Google Scholar 

  • Hazen RM, Morrison SM, Prabhu A (2020) An evolutionary system of mineralogy, Part III: primary chondrule mineralogy (4566 to 4561 Ma). Am Mineral. https://doi.org/10.2138/am-2020-7564

    Article  Google Scholar 

  • Hazen RM, Papineau D, Bleeker W, Downs RT, Ferry JM, McCoy TJ, Sverjensky DA, Yang H (2008) Mineral evolution. Am Mineral 93:1693–1720. https://doi.org/10.2138/am.2008.2955

  • Hintze C (1897) Handbuch der Mineralogie. Verlag Von Veit & Comp, Leipzig, Germany

    Google Scholar 

  • Hipperson M, Waldmann I, Grindrod P, Nikolaou N (2020) Mapping mineralogical distributions on mars with unsupervised machine learning. EPSC2020–773. https://doi.org/10.5194/epsc2020-773

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci 79:2554–2558. https://doi.org/10.1073/pnas.79.8.2554

    Article  Google Scholar 

  • Huang TS, Schreiber WF, Tretiak OJ (1971) Image processing. Proc IEEE 59:1586–1609. https://doi.org/10.1109/PROC.1971.8491

  • Hummer DR (2022) Data mining the past: using large mineral datasets to trace Earth’s geochemical history

    Google Scholar 

  • Hummer DR, Golden JJ, Hystad G, Downs RT, Eleish A, Liu C, Ralph J, Morrison SM, Meyer MB, Hazen RM (2022) Evidence for the oxidation of Earth’s crust from the evolution of manganese minerals. Nat Commun 13:960. https://doi.org/10.1038/s41467-022-28589-x

    Article  Google Scholar 

  • Hystad G, Boujibar A, Liu N, Nittler LR, Hazen RM (2021) Evaluation of the classification of pre-solar silicon carbide grains using consensus clustering with resampling methods: An assessment of the confidence of grain assignments. Mon Not R Astron Soc 510:334–350. https://doi.org/10.1093/mnras/stab3478

    Article  Google Scholar 

  • Hystad G, Downs RT, Grew ES, Hazen RM (2015a) Statistical analysis of mineral diversity and distribution: Earth’s mineralogy is unique. Earth Planet Sci Lett 426:154–157. https://doi.org/10.1016/j.epsl.2015.06.028

    Article  Google Scholar 

  • Hystad G, Downs RT, Hazen RM (2015b) Mineral species frequency distribution conforms to a large number of rare events model: prediction of earth’s missing minerals. Math Geosci 47:647–661. https://doi.org/10.1007/s11004-015-9600-3

    Article  Google Scholar 

  • Hystad G, Eleish A, Hazen RM, Morrison SM, Downs RT (2019a) Bayesian estimation of earth’s undiscovered mineralogical diversity using noninformative priors. Math Geosci 51:401–417. https://doi.org/10.1007/s11004-019-09795-8

    Article  Google Scholar 

  • Hystad G, Morrison SM, Hazen RM (2019b) Statistical analysis of mineral evolution and mineral ecology: the current state and a vision for the future. Appl Comput Geosci 1:100005. https://doi.org/10.1016/j.acags.2019.100005

    Article  Google Scholar 

  • Imbrie J, Van Andel TH (1964) Vector analysis of heavy-mineral data. Geol Soc Am Bull 75:1131. https://doi.org/10.1130/0016-7606(1964)75[1131:VAOHD]2.0.CO;2

    Article  Google Scholar 

  • Jooshaki M, Nad A, Michaux S (2021) A systematic review on the application of machine learning in exploiting mineralogical data in mining and mineral industry. Minerals 11:816. https://doi.org/10.3390/min11080816

    Article  Google Scholar 

  • Jorgenson C, Higgins O, Petrelli M, Bégué F, Caricchi L (2022) A machine learning‐based approach to clinopyroxene thermobarometry: model optimization and distribution for use in earth sciences. J Geophys Res Solid Earth 127. https://doi.org/10.1029/2021JB022904

  • Kalashnikov AO, YaA P, Bazai AV, Mikhailova JA, Konopleva NG (2021) Rock-chemistry-to-mineral-properties conversion: Machine learning approach. Ore Geol Rev 136:104292. https://doi.org/10.1016/j.oregeorev.2021.104292

    Article  Google Scholar 

  • Karageorgiou MMD, Karymbalis E, Karageorgiou DE (2017) The use of the geographical information systems (G.I.S) in the geological—mineralogical mapping of the paranesti area. Bull Geol Soc Greece 43:1601. https://doi.org/10.12681/bgsg.11334

  • Kerner HR (2019) machine learning on mars: a new lens on data from planetary exploration missions

    Google Scholar 

  • Kolaczyk ED (2009) Statistical analysis of network data. New York, NY

    Google Scholar 

  • Kovasznay LSG, Joseph H (1955) Image processing. Proc IRE 43:560–570. https://doi.org/10.1109/JRPROC.1955.278100

  • Krivovichev SV, Krivovichev VG, Hazen RM (2017) Structural and chemical complexity of minerals: correlations and time evolution. Eur J Mineral 30:231–236. https://doi.org/10.1127/ejm/2018/0030-2694

    Article  Google Scholar 

  • Laetsch T, Downs R (2006) Software for identification and refinement of cell parameters from powder diffraction data of minerals using the RRUFF Project and American Mineralogist Crystal Structure Databases. p e28

    Google Scholar 

  • Lafuente B, Downs RT, Yang H, Stone N (2015) 1. The power of databases: The RRUFF project. In: Armbruster T, Danisi RM (eds) Highlights in mineralogical crystallography. De Gruyter, pp 1–30

    Google Scholar 

  • Lafuente B, Downs RT, Yang H, Stone N (2016) The power of databases: the RRUFF project

    Google Scholar 

  • Lagain A, Bouley S, Zanda B, Miljković K, Rajšić A, Baratoux D, Payré V, Doucet LS, Timms NE, Hewins R, Benedix GK, Malarewic V, Servis K, Bland PA (2022) Early crustal processes revealed by the ejection site of the oldest martian meteorite. Nat Commun 13:3782. https://doi.org/10.1038/s41467-022-31444-8

    Article  Google Scholar 

  • Lalla EA, Cote K, Hickson D, Garnitschnig S, Konstantinidis M, Such P, Czakler C, Schroder C, Frigeri A, Ercoli M, Losiak A, Gruber S, Groemer G (2020) Laboratory analysis of returned samples from the AMADEE-18 mars analog mission. Astrobiology 20:1303–1320. https://doi.org/10.1089/ast.2019.2038

    Article  Google Scholar 

  • Langkau S, Erdmann M (2021) Environmental impacts of the future supply of rare earths for magnet applications. J Ind Ecol 25:1034–1050. https://doi.org/10.1111/jiec.13090

    Article  Google Scholar 

  • Langley P (2011) The changing science of machine learning. Mach Learn 82:275–279. https://doi.org/10.1007/s10994-011-5242-y

    Article  Google Scholar 

  • Large RR, Hazen RM, Morrison SM, Gregory DD, Steadman JA, Mukherjee I (2022) Evidence that the GOE was a prolonged event with a peak around 1900 Ma. Geosystems Geoenvironment 1:100036. https://doi.org/10.1016/j.geogeo.2022.100036

    Article  Google Scholar 

  • Lee Y-T (1999) Information modeling: from design to implementation

    Google Scholar 

  • Lehnert K, Su Y, Langmuir CH, Sarbas B, Nohl U (2000) A global geochemical database structure for rocks: geochemical database structure. Geochem Geophys Geosystems 1. https://doi.org/10.1029/1999GC000026

  • Lehnert KA, Ji P, Mays J, Figueroa JD, Johansson A, Profeta L, Song L, Richard S, Morrison S, Ostroverkhova A (2021) The astromaterials data system: advancing access and preservation of past, present, and future lab analytical data of NASA’S astromaterials. Collections 2654:2025

    Google Scholar 

  • Lehnert KA, Markey K, Ji P, Evans C, Zeigler R (2019) The astromaterials data system: transforming access to planetary sample data. 2799

    Google Scholar 

  • Li SZ, Chayes F (1983) A prototype data base for IGCP project 163—IGBA. Comput Geosci 9:523–526. https://doi.org/10.1016/0098-3004(83)90020-1

    Article  Google Scholar 

  • Liu C, Eleish A, Hystad G, Golden JJ, Downs RT, Morrison SM, Hummer DR, Ralph JP, Fox P, Hazen RM (2018) Analysis and visualization of vanadium mineral diversity and distribution. Am Mineral 103:1080–1086. https://doi.org/10.2138/am-2018-6274

    Article  Google Scholar 

  • Liu C, Hystad G, Golden JJ, Hummer DR, Downs RT, Morrison SM, Ralph JP, Hazen RM (2017) Chromium mineral ecology. Am Mineral 102:612–619. https://doi.org/10.2138/am-2017-5900

  • Liu J, Cheng Q, Wang J-G, Dong Y (2022) A “weighted” geochemical variable classification method based on latent variables. Nat Resour Res 1–17

    Google Scholar 

  • Liu X-M, Kah LC, Knoll AH, Cui H, Wang C, Bekker A, Hazen RM (2021) A persistently low level of atmospheric oxygen in Earth’s middle age. Nat Commun 12:351. https://doi.org/10.1038/s41467-020-20484-7

    Article  Google Scholar 

  • Lohr S (2012) The age of big data. N. Y. Times

    Google Scholar 

  • Lopez-Reyes G, Sobron P, Lefebvre C, Rull F (2014) Multivariate analysis of Raman spectra for the identification of sulfates: Implications for ExoMars†. Am Mineral 99:1570–1579. https://doi.org/10.2138/am.2014.4724

    Article  Google Scholar 

  • Louis H (1920) (1) Imperial Mineral Resources Bureau the Mineral Industry of the British Empire and Foreign Countries War Period Arsenic (2) Tungsten Ores. Nature 106:528–529. https://doi.org/10.1038/106528a0

    Article  Google Scholar 

  • Lowry S, Wieboldt D, Dalrymple D, Jasinevicius R, Downs RT (2009) The use of a Raman spectral database of minerals for the rapid verification of semiprecious gemstones. Spectroscopy 24:1–7

    Google Scholar 

  • Lui TCC, Gregory DD, Anderson M, Lee W-S, Cowling SA (2022) Applying machine learning methods to predict geology using soil sample geochemistry. Appl Comput Geosci 16:100094. https://doi.org/10.1016/j.acags.2022.100094

    Article  Google Scholar 

  • Ma X, Hummer D, Golden JJ, Fox PA, Hazen RM, Morrison SM, Downs RT, Madhikarmi BL, Wang C, Meyer MB (2017) Using visual exploratory data analysis to facilitate collaboration and hypothesis generation in cross-disciplinary research. ISPRS Int J Geo-Inf 6:368. https://doi.org/10.3390/ijgi6110368

    Article  Google Scholar 

  • Ma X, Hummer D, Hazen RM, Golden JJ, Fox P, Meyer M (2016) Showing co-relationships between elements and minerals in a three-dimensional matrix. In: GSA annual meeting, Denver, Colorado, USA

    Google Scholar 

  • Ma X, Ralph J, Que X, Prabhu A, Morrison SM, Hazen RM, Wyborn LA, Lehnert KA (2022) OpenMindat: open and fair mineralogy data from the mindat database (In review). Geosci Data J

    Google Scholar 

  • Madera A, Gross J (2021) Provenance of lunar basaltic meteorite Northwest Africa 8632 and Related Meteorites. 2686

    Google Scholar 

  • Madera A, Gross J (2022) Lunar-sample-provenance (LSP) program: determining the potential source regions of lunar basaltic meteorites‬. In: LPI contributions. p 2823‬

    Google Scholar 

  • Maitre J, Bouchard K, Bédard LP (2019) Mineral grains recognition using computer vision and machine learning. Comput Geosci 130:84–93. https://doi.org/10.1016/j.cageo.2019.05.009

    Article  Google Scholar 

  • Mannila H (1997) Methods and problems in data mining. In: Afrati F, Kolaitis P (eds) Database theory—ICDT ’97. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 41–55

    Google Scholar 

  • Marghany M (2021) Remote sensing and image processing in mineralogy, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  • Mason GT, Arndt RE (1996) Mineral resources data system (MRDS)

    Google Scholar 

  • Mays J, Cao S, Downs R, Figueroa JD, Ji P, Johansson A, Morrison SM, Ostroverkhova A, Profeta L, Richard S, Lehnert KA (2022) The astromaterials data system: access and preservation of past, present, and future data from planetary sample analysis—new developments. Goldschmidt

    Google Scholar 

  • Mays J, Profeta L, Lehnert KA, Ji P, Morrison SM, Johansson A, Song L, Figueroa JD, Evans C, Zeigler R (2020) Broadening access to space science data: the astromaterials data system. In: Goldschmidt Abstracts. Geochemical Society, pp 1749–1749

    Google Scholar 

  • McCoy JT, Auret L (2019) Machine learning applications in minerals processing: a review. Miner Eng 132:95–109. https://doi.org/10.1016/j.mineng.2018.12.004

    Article  Google Scholar 

  • McFaul EJ, Mason GT, Ferguson WB, Lipin BR (2000) U.S. Geological Survey mineral databases; MRDS and MAS/MILS

    Google Scholar 

  • Miesch AT (1976) Interactive computer programs for petrologic modeling with extended Q-mode factor analysis. Comput Geosci 2:439–492. https://doi.org/10.1016/0098-3004(76)90039-X

    Article  Google Scholar 

  • Misra P, Bower D, Coleman R (2021) Machine Learning as a Tool to aid in the interpretation of spectroscopic data: applications to lunar and planetary exploration

    Google Scholar 

  • Mooney PR, Dembowski R, Laetsch T, Zwick J, Downs RT, Lu R (2005) RRUFF Project: developing an integrated database of Raman and infrared spectra, x-ray diffraction and chemistry data for minerals

    Google Scholar 

  • Moore E, Ostroverkhova A, Hummer DR, Morrison SM, Spielman S (2021) Investigating iron redox evolution using the mineral chemistry network analysis platform, dragon. Goldschmidt2021 Virtual 4–9 July

    Google Scholar 

  • Moore EK, Golden JJ, Morrison SM, Hao J, Spielman SJ (2022a) The expanding network of mineral chemistry throughout earth history reveals global shifts in crustal chemistry during the Proterozoic. Sci Rep 12:4956. https://doi.org/10.1038/s41598-022-08650-x

    Article  Google Scholar 

  • Moore EK, Ostroverkhova A, Hummer DR, Morrison SM, Peralta Y, Spielman SJ (2022b) The influence of oxygen and electronegativity on iron mineral chemistry throughout Earth’s history. Precambrian Res 106960 (in press)

    Google Scholar 

  • Morrison S, Eleish A, Liu C, Hummer D, Giovannelli D, Meyer M, Fox P, Downs R, Golden J, Pires A, Hystad G, Ralph J, Hazen R (2017a) Network analysis applications: exploring geosphere and biosphere co-evolution with big data techniques. In: Goldschmidt annual meeting. p #2017a006180

    Google Scholar 

  • Morrison SM, Liu C, Eleish A, Prabhu A, Li C, Ralph J, Downs RT, Golden JJ, Fox P, Hummer DR, Meyer MB, Hazen RM (2017b) Network analysis of mineralogical systems. Am Mineral 102:1588–1596. https://doi.org/10.2138/am-2017-6104CCBYNCND

    Article  Google Scholar 

  • Morrison S, Hazen RM, Prabhu A, Williams J, Eleish A, Fox P (2021a) Mineral network analysis: exploring geological, geochemical, and biological patterns in mineralization via multidimensional analysis. p 370437

    Google Scholar 

  • Morrison S, Hazen RM, Prabhu A, Williams J, Eleish A, Fox P (2021b) Mineral network analysis: exploring geological, geochemical, and biological patterns in mineralization via multidimensional analysis. https://doi.org/10.1130/ABS/2021AM-370437

  • Morrison S, Pan F, Gagné O, Prabhu A, Eleish A, Fox P, Downs R, Bristow T, Rampe E, Blake D, Vaniman D, Achilles C, Ming D, Yen A, Treiman A, Morris R, Chipera S, Craig P, Tu V, Castle N, Sarrazin P, Des Marais, DJ and HR (2018a) Predicting multi-component mineral compositions in gale crater, mars with label distribution learning. In: AGU fall meeting abstracts. pp P21I-3438

    Google Scholar 

  • Morrison SM, Downs RT, Blake DF, Prabhu A, Eleish A, Vaniman DT, Ming DW, Rampe EB, Hazen RM, Achilles CN, Treiman AH, Yen AS, Morris RV, Bristow TF, Chipera SJ, Sarrazin PC, Fendrich KV, Morookian JM, Farmer JD, DesMarais DJ, Craig PI (2018b) Relationships between unit-cell parameters and composition for rock-forming minerals on Earth, Mars, and other extraterrestrial bodies. Am Mineral 103:848–856. https://doi.org/10.2138/am-2018-6123

    Article  Google Scholar 

  • Morrison SM, Downs RT, Blake DF, Vaniman DT, Ming DW, Hazen RM, Treiman AH, Achilles CN, Yen AS, Morris RV, Rampe EB, Bristow TF, Chipera SJ, Sarrazin PC, Gellert R, Fendrich KV, Morookian JM, Farmer JD, DesMarais DJ, Craig PI (2018c) Crystal chemistry of martian minerals from Bradbury Landing through Naukluft Plateau, Gale crater, Mars. Am Mineral 103:857–871. https://doi.org/10.2138/am-2018-6124

    Article  Google Scholar 

  • Morrison SM, Pan F, Gagne OC, Prabhu A, Eleish A, Fox PA, Downs RT, Bristow T, Rampe EB, Blake DF, Vaniman D, Achilles C, Ming DW, Yen A, Treiman AH, Morris RV, Chipera S, Craig P, Tu V, Castle N, Sarrazin P, Marais DJD, Hazen R (2018d) Predicting multi-component mineral compositions in gale crater, mars with label distribution learning. AGU

    Google Scholar 

  • Morrison S, Prabhu A, Eleish A, Narkar S, Fox P, Golden J, Downs R, Perry S, Burns P, Ralph J, Hazen R (2022a) Machine learning approaches for predictive mineralogy in Earth and planetary science: a study in mineral association analysis. PNAS Nexus in review

    Google Scholar 

  • Morrison SM, Cantoni A, Prabhu A, Udry A, Hazen R, Ostroverkhova A (2022b) Exploring Martian geology and habitability via mineral network analysis. AGU

    Google Scholar 

  • Morrison SM, Prabhu A, Hazen RM (2022c) An evolutionary system of mineralogy, Part VI: Earth’s earliest Hadean crust (>4370 Ma). Am Mineral. https://doi.org/10.2138/am-2022-8329

    Article  Google Scholar 

  • Morrison SM, Buongiorno J, Downs RT, Eleish A, Fox P, Giovannelli D, Golden JJ, Hummer DR, Hystad G, Kellogg LH, Kreylos O, Krivovichev SV, Liu C, Merdith A, Prabhu A, Ralph J, Runyon SE, Zahirovic S, Hazen RM (2020a) Exploring carbon mineral systems: recent advances in c mineral evolution, mineral ecology, and network analysis. Front Earth Sci 8:208. https://doi.org/10.3389/feart.2020.00208

    Article  Google Scholar 

  • Morrison SM, Hazen RM (2020a) An evolutionary system of mineralogy, Part IV: planetesimal differentiation and impact mineralization (4566–4560 Ma). Am Mineral. https://doi.org/10.2138/am-2021-7632

    Article  Google Scholar 

  • Morrison SM, Hazen RM (2020b) An evolutionary system of mineralogy. Part II: interstellar and solar nebula primary condensation mineralogy (>4.565 Ga). Am Mineral 105:1508–1535. https://doi.org/10.2138/am-2020-7447

    Article  Google Scholar 

  • Morrison SM, Prabhu A, Eleish A, Narkar S, Fox P, Golden JJ, Downs RT, Perry S, Burns PC, Ralph J, Hazen RM (2020b) Mineral affinity analysis: predicting unknown mineral occurrences with machine learning. In: Goldschmidt abstracts. geochemical society, pp 1853–1853

    Google Scholar 

  • Muñoz-Iglesias V, Sánchez-García L, Carrizo D, Molina A, Fernández-Sampedro M, Prieto-Ballesteros O (2022) Raman spectroscopic peculiarities of Icelandic poorly crystalline minerals and their implications for Mars exploration. Sci Rep 12:5640. https://doi.org/10.1038/s41598-022-09684-x

    Article  Google Scholar 

  • Mustafa A, Tariq Z, Mahmoud M, Radwan AE, Abdulraheem A, Abouelresh MO (2022) Data-driven machine learning approach to predict mineralogy of organic-rich shales: an example from Qusaiba Shale, Rub’ al Khali Basin. Saudi Arabia. Mar Pet Geol 137:105495. https://doi.org/10.1016/j.marpetgeo.2021.105495

    Article  Google Scholar 

  • Nance RD, Murphy JB, Santosh M (2014) The supercontinent cycle: a retrospective essay. Gondwana Res 25:4–29. https://doi.org/10.1016/j.gr.2012.12.026

    Article  Google Scholar 

  • National Research Council (U.S.), National Research Council (U.S.), National Research Council (U.S.), National Research Council (U.S.) (eds) (2008) Minerals, critical minerals, and the U.S. economy. National Academies Press, Washington, D.C

    Google Scholar 

  • Nazarpour A, Omran NR, Paydar GR, Sadeghi B, Matroud F, Nejad AM (2015) Application of classical statistics, logratio transformation and multifractal approaches to delineate geochemical anomalies in the Zarshuran gold district, NW Iran. Geochemistry 75:117–132

    Google Scholar 

  • Needham J (1986) Science and civilization in China. Volume 3: mathematics and the sciences of the heavens and the Earth, Taipei. Caves Books Ltd

    Google Scholar 

  • Needham J, Wang L, Needham J (2005) Mathematics and the sciences of the heavens and the earth. Cambridge University Press, Cambridge

    Google Scholar 

  • Newman MEJ (Mark EJ) (2010) Networks: an introduction. Oxford University Press

    Google Scholar 

  • Ostroverkhova A, Morrison S, Mays J, Johansson A, Profeta L, Lehnert K (2021) Astromaterial databases from two perspectives: user and curator| lessons learned from the current state of meteorite data reporting and database. LPI Contrib 2654:2026

    Google Scholar 

  • Ostroverkhova A, Prabhu A (2019) Evolution and structure complexity of Lithium minerals: applying of network analysis. pp 29–29

    Google Scholar 

  • Ostroverkhova A, Morrison SM, Prabhu A, Hummer DR, Hazen RM, Mays J, Johansson A, Profeta L, Lehnert K (2022a) Exploring olivine from chondrites: informing classification via machine learning. 2678:2945

    Google Scholar 

  • Ostroverkhova A, Prabhu A, Boujibar A, Hummer DR, Johansson A, Profeta L, Mays J, Lehnert K, Hazen R, Morrison SM (2022b) Exploring olivine in astromaterials: classification of chondritic components based on major/minor oxides and oxygen isotopes. AGU

    Google Scholar 

  • Pan F, Morrison SM, Prabhu A, Eleish A, Gagne OC, Fox P, Downs RM, Hazen RM (2018) Predicting multi-component mineral compositions with label distribution learning. In: The 4D workshop. p 41

    Google Scholar 

  • Panzeri S, Senatore R, Montemurro MA, Petersen RS (2007) Correcting for the sampling bias problem in spike train information measures. J Neurophysiol 98:1064–1072. https://doi.org/10.1152/jn.00559.2007

    Article  Google Scholar 

  • Parsons MA, Fox PA (2013) Is data publication the right Metaphor? Data Sci J 12:WDS32–WDS46. https://doi.org/10.2481/dsj.WDS-042

  • Parsons MA, Fox PA (2014) Why data citation currently misses the point. In: AGU fall meeting abstracts. pp IN51B-3780

    Google Scholar 

  • Perry S, Morrison S, Runyon S, Prabhu A, Eleish A, Zhong H, Burns P, Hazen R (2018) Big data network analysis of uranium mineral occurrences and formation mechanisms. In: International mineralogical association conference

    Google Scholar 

  • Petrelli M, Perugini D (2016) Solving petrological problems through machine learning: the study case of tectonic discrimination using geochemical and isotopic data. Contrib Mineral Petrol 171:81. https://doi.org/10.1007/s00410-016-1292-2

    Article  Google Scholar 

  • Pieters CM, Boardman J, Buratti B, Chatterjee A, Clark R, Glavich T, Green R, Head J, Isaacson P, Malaret E, McCord T, Mustard J, Petro N, Runyon C, Staid M, Sunshine J, Taylor L, Tompkins S, Varanasi P, White M (2009) The moon mineralogy mapper (M3) on chandrayaan-1. Curr Sci 96:500–505

    Google Scholar 

  • Prabhu A (2021) Towards automated axiom generation: a semi-automated approach to generating “knowledge and rule base” corpora from text narratives. Rensselaer Polytechnic Institute

    Google Scholar 

  • Prabhu A, Fox P (2021) Reproducible workflow. In: Daya Sagar BS, Cheng Q, McKinley J, Agterberg F (eds) Encyclopedia of mathematical geosciences. Springer International Publishing, Cham, pp 1–5

    Google Scholar 

  • Prabhu A, Fox PA, Zhong H, Eleish A, Ma X, Zednik S, Morrison SM, Moore EK, Muscente D, Meyer M, Hazen RM (2017) Visualizing complex environments in the geo- and biosciences. In: AGU fall meeting abstracts. pp IN31D-02

    Google Scholar 

  • Prabhu A, Morrison S, Giovannelli D (2021a) A new way to evaluate association rule mining methods and its applicability to mineral association analysis. Inf Comput Sci

    Google Scholar 

  • Prabhu A, Morrison SM, Eleish A, Zhong H, Huang F, Golden JJ, Perry SN, Hummer DR, Ralph J, Runyon SE, Fontaine K, Krivovichev S, Downs RT, Hazen RM, Fox P (2021b) Global earth mineral inventory: a data legacy. Geosci Data J 8:74–89. https://doi.org/10.1002/gdj3.106

    Article  Google Scholar 

  • Prabhu A, Morrison SM, Eleish A, Narkar S, Fox PA, Golden JJ, Downs RT, Perry S, Burns PC, Ralph J, Others (2019a) Predicting unknown mineral localities based on mineral associations. In: {AGU} fall meeting 2019a

    Google Scholar 

  • Prabhu A, Morrison SM, Eleish A, Narkar S, Fox PA, Golden JJ, Downs RT, Perry S, Burns PC, Ralph J, Runyon SE, Hazen R (2019b) Predicting unknown mineral localities based on mineral associations. pp EP23D-2286

    Google Scholar 

  • Prabhu A, Morrison SM, Fox P, Ma X, Wong ML, Williams J, McGuinness KN, Krivovichev S, Lehnert KA, Ralph JP, Lafuente B, Downs R, Walter M, Hazen RM (2022) What is mineral informatics? Inf Comput Sci

    Google Scholar 

  • Profeta L, Lehnert K, Ji P, Figueroa J, Johansson A, Mays J, Morrison S, Ostroverkhova A (2021) Bringing cosmochemistry data into the Big-Data Era: the astromaterials data system. pp IN55F-0288

    Google Scholar 

  • Rajesh HM (2004) Application of remote sensing and GIS in mineral resource mapping-an overview. J Mineral Petrol Sci 99:83–103. https://doi.org/10.2465/jmps.99.83

    Article  Google Scholar 

  • Rampe EB, Blake DF, Bristow TF, Ming DW, Vaniman DT, Morris RV, Achilles CN, Chipera SJ, Morrison SM, Tu VM, Yen AS, Castle N, Downs GW, Downs RT, Grotzinger JP, Hazen RM, Treiman AH, Peretyazhko TS, Des Marais DJ, Walroth RC, Craig PI, Crisp JA, Lafuente B, Morookian JM, Sarrazin PC, Thorpe MT, Bridges JC, Edgar LA, Fedo CM, Freissinet C, Gellert R, Mahaffy PR, Newsom HE, Johnson JR, Kah LC, Siebach KL, Schieber J, Sun VZ, Vasavada AR, Wellington D, Wiens RC (2020) Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater, Mars: a review after six Earth years of exploration with Curiosity. Chem Erde 80. https://doi.org/10.1016/j.chemer.2020.125605

  • Richards JA (2013) Remote sensing digital image analysis: an introduction, 5th edn. Springer, Berlin

    Google Scholar 

  • Rodriguez IH, Lopez-Reyes G, Llanos DR, Perez FR (2014) Automatic Raman spectra processing for exomars. In: Pardo-Igúzquiza E, Guardiola-Albert C, Heredia J, Moreno-Merino L, Durán JJ, Vargas-Guzmán JA (eds) Mathematics of planet earth. Springer, Berlin, Heidelberg, pp 127–130

    Google Scholar 

  • Rodriguez-Galiano V, Sanchez-Castillo M, Chica-Olmo M, Chica-Rivas M (2015) Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol Rev 71:804–818. https://doi.org/10.1016/j.oregeorev.2015.01.001

    Article  Google Scholar 

  • Rubo RA, de Carvalho Carneiro C, Michelon MF, Gioria R dos S (2019) Digital petrography: mineralogy and porosity identification using machine learning algorithms in petrographic thin section images. J Pet Sci Eng 183:106382. https://doi.org/10.1016/j.petrol.2019.106382

  • Rull F, Maurice S, Diaz E, Tato C, Pacros A, Rls Team (2011) The Raman Laser Spectrometer (RLS) on the ExoMars 2018 Rover Mission. 2400

    Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536. https://doi.org/10.1038/323533a0

    Article  Google Scholar 

  • Russ JC (2006) The image processing handbook. CRC Press

    Google Scholar 

  • Sadeghi B (2021) Concentration-concentration fractal modelling: a novel insight for correlation between variables in response to changes in the underlying controlling geological-geochemical processes. Ore Geol Rev 128:103875

    Google Scholar 

  • Sadeghi B, Cohen DR (2021) Concentration-distance from centroids (C-DC) multifractal modeling: a novel approach to characterizing geochemical patterns based on sample distance from mineralization. Ore Geol Rev 137:104302

    Google Scholar 

  • Sadeghi B, Khalajmasoumi M (2015) A futuristic review for evaluation of geothermal potentials using fuzzy logic and binary index overlay in GIS environment. Renew Sustain Energy Rev 43:818–831. https://doi.org/10.1016/j.rser.2014.11.079

    Article  Google Scholar 

  • Sadeghi B, Madani N, Carranza EJM (2015) Combination of geostatistical simulation and fractal modeling for mineral resource classification. J Geochem Explor 149:59–73

    Google Scholar 

  • Sadeghi B, Moarefvand P, Afzal P, Yasrebi AB, Saein LD (2012) Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran. J Geochem Explor 122:9–19

    Google Scholar 

  • Schönig J, von Eynatten H, Tolosana-Delgado R, Meinhold G (2021) Garnet major-element composition as an indicator of host-rock type: a machine learning approach using the random forest classifier. Contrib Mineral Petrol 176:98. https://doi.org/10.1007/s00410-021-01854-w

    Article  Google Scholar 

  • Shawky MM, El-Arafy RA, El Zalaky MA, Elarif T (2019) Integrated image processing and GIS-based techniques using knowledge-driven approaches to produce potential radioactivity map for the uraniferous granite of Egypt. NRIAG J Astron Geophys 8:185–197. https://doi.org/10.1080/20909977.2019.1667130

    Article  Google Scholar 

  • Siebach K, Costin G, Jiang Y, VanBommel S, Brown A (2021) Mineral identification from SToichiometry (MIST) Model with Application to PIXL on Mars 2020 Perseverance. 2021:MR45A-0077

    Google Scholar 

  • Siebach KL, costin G, Moreland E, Jiang Y (2022) MIST: an algorithm for automating mineral identification by SToichiometry. In: International Mineralogical Association. p OL40_5

    Google Scholar 

  • Silvello G (2018) Theory and practice of data citation. J Assoc Inf Sci Technol 69:6–20. https://doi.org/10.1002/asi.23917

    Article  Google Scholar 

  • Sobron P, Sobron F, Sanz A, Rull F (2008) Raman signal processing software for automated identification of mineral phases and biosignatures on mars. Appl Spectrosc 62:364–370

    Google Scholar 

  • Spielman SJ, Moore EK (2020) Dragon: a new tool for exploring redox evolution preserved in the mineral record. Front Earth Sci 8. https://doi.org/10.3389/feart.2020.585087

  • Srivastava N, Spielman SJ, Morrison SM, Moore EK (2021) Geological factors impacted cadmium availability and use as an alternative cofactor for zinc in the carbon fixation pathways of marine diatoms. J Geophys Res Biogeosci 126:e2020JG005966. https://doi.org/10.1029/2020jg005966

  • Stall S, Yarmey L, Cutcher-Gershenfeld J, Hanson B, Lehnert K, Nosek B, Parsons M, Robinson E, Wyborn L (2019) Make scientific data FAIR. Nature 570:27–29. https://doi.org/10.1038/d41586-019-01720-7

    Article  Google Scholar 

  • Steel, Jr. TB (ed) (1975) Interim report: ANSI/X3/SPARC Study group on data base management systems. Bull ACM SIGMOD 7:1–140

    Google Scholar 

  • Sun C, Xu W, Tan Y, Zhang Y, Yue Z, Zou L, Shabbir S, Wu M, Chen F, Yu J (2021) From machine learning to transfer learning in laser-induced breakdown spectroscopy analysis of rocks for Mars exploration. Sci Rep 11:21379. https://doi.org/10.1038/s41598-021-00647-2

    Article  Google Scholar 

  • Thomson AR, Kohn SC, Prabhu A, Walter MJ (2021) Evaluating the formation pressure of diamond‐hosted majoritic garnets: a machine learning majorite barometer. J Geophys Res Solid Earth 126. https://doi.org/10.1029/2020JB020604

  • Till R (1974) Statistical methods for the Earth scientist. Macmillan Education UK, London

    Google Scholar 

  • Valetich MJ, Le Losq C, Arculus RJ, Umino S, Mavrogenes J (2021) Compositions and classification of fractionated boninite series melts from the Izu–Bonin–Mariana Arc: a machine learning approach. J Petrol 62:egab013. https://doi.org/10.1093/petrology/egab013

  • Vaniman DT, Bish DL, Ming DW, Bristow TF, Morris RV, Blake DF, Chipera SJ, Morrison SM, Treiman AH, Rampe EB, Rice M, Achilles CN, Grotzinger JP, McLennan SM, Williams J, Bell JF III, Newsom HE, Downs RT, Maurice S, Sarrazin P, Yen AS, Morookian JM, Farmer JD, Stack K, Milliken RE, Ehlmann BL, Sumner DY, Berger G, Crisp JA, Hurowitz JA, Anderson R, Des Marais DJ, Stolper EM, Edgett KS, Gupta S, Spanovich N (2014) Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars. Science 343:1–9. https://doi.org/10.1126/science.1243480

    Article  Google Scholar 

  • Voice PJ, Kowalewski M, Eriksson KA (2011) Quantifying the timing and rate of crustal evolution: global compilation of radiometrically dated detrital zircon grains. J Geol 119:109–126. https://doi.org/10.1086/658295

    Article  Google Scholar 

  • Wachter S (2019) Data protection in the age of big data. Nat Electron 2:6–7. https://doi.org/10.1038/s41928-018-0193-y

    Article  Google Scholar 

  • Wang C, Hazen RM, Cheng Q, Stephenson MH, Zhou C, Fox P, Shen S, Oberhänsli R, Hou Z, Ma X, Feng Z, Fan J, Ma C, Hu X, Luo B, Wang J, Schiffries CM (2021) The deep-time digital earth program: data-driven discovery in geosciences. Natl Sci Rev 8:nwab027. https://doi.org/10.1093/nsr/nwab027

  • Wang L (2017) Heterogeneous Data and Big Data Analytics. Autom Control Inf Sci 3:8–15. https://doi.org/10.12691/acis-3-1-3

  • Wang W, Zhao J, Cheng Q (2023) Geographically weighted regression in mineral exploration: a new application to investigate mineralization. In: Recent advancement in geoinformatics and data science. Geological Society of America

    Google Scholar 

  • Wei J, Wang A, Lambert JL, Wettergreen D, Cabrol N, Warren-Rhodes K, Zacny K (2015) Autonomous soil analysis by the Mars Micro-beam Raman Spectrometer (MMRS) on-board a rover in the Atacama Desert: a terrestrial test for planetary exploration. J Raman Spectrosc 46:810–821. https://doi.org/10.1002/jrs.4656

    Article  Google Scholar 

  • Widom J (1995) Research problems in data warehousing. In: Proceedings of the fourth international conference on Information and knowledge management—CIKM ’95. ACM Press, Baltimore, Maryland, United States, pp 25–30

    Google Scholar 

  • Wilkinson MD, Dumontier M, Aalbersberg IjJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten J-W, da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, Gray AJG, Groth P, Goble C, Grethe JS, Heringa J, ’t Hoen PAC, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME, Mons A, Packer AL, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone S-A, Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA, Thompson M, van der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Mons B (2016) The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3:160018. https://doi.org/10.1038/sdata.2016.18

  • Williams RBG (1986) Intermediate statistics for geographers and earth scientists. Macmillan Education UK, London

    Google Scholar 

  • Wu G, Chen G, Cheng Q, Zhang Z, Yang J (2021) Unsupervised machine learning for lithological mapping using geochemical data in covered areas of Jining, China. Nat Resour Res 30:1053–1068

    Google Scholar 

  • Wyborn LA, Lehnert K, Klump JF (2021) The future of x-informatics lies in collaborative convergence: an exemplar from the global global onegeochemistry initiative. AGU

    Google Scholar 

  • Yang Q, Wu X (2006) 10 Challenging problems in data mining research. Int J Inf Technol Decis Mak 05:597–604. https://doi.org/10.1142/S0219622006002258

    Article  Google Scholar 

  • Yu S (2016) Big privacy: challenges and opportunities of privacy study in the age of big data. IEEE Access 4:2751–2763. https://doi.org/10.1109/ACCESS.2016.2577036

    Article  Google Scholar 

  • Zhang P, Zhang Z, Yang J, Cheng Q (2022) Machine learning prediction of ore deposit genetic type using magnetite geochemistry. Nat Resour Res. https://doi.org/10.1007/s11053-022-10146-4

    Article  Google Scholar 

  • Zhang S, Morrison SM, Prabhu A, Ma C, Huang F, Gregory D, Large RR, Hazen R, Zhang S, Morrison SM, Prabhu A, Ma C, Huang F, Gregory D, Large RR, Hazen R (2019) Natural clustering of pyrite with implications for its formational environment. AGUFM 2019:EP23D-2284

    Google Scholar 

  • Zhao D, Bartlett S, Yung YL (2020) Quantifying mineral-ligand structural similarities: bridging the geological world of minerals with the biological world of enzymes. Life 10:338. https://doi.org/10.3390/life10120338

    Article  Google Scholar 

  • Zhenjie Z, Qiuming C, Jie Y, Guopeng WU, Yunzhao GE (2021) Machine learning for mineral prospectivity: a case study of iron-polymetallic mineral prospectivity in southwestern Fujian. Earth Sci Front 28:221

    Google Scholar 

  • Zhou C, Wang H, Wang C, Hou Z, Zheng Z, Shen S, Cheng Q, Feng Z, Wang X, Lv H, Fan J, Hu X, Hou M, Zhu Y (2021) Geoscience knowledge graph in the big data era. Sci China Earth Sci 64:1105–1114. https://doi.org/10.1007/s11430-020-9750-4

    Article  Google Scholar 

  • Zhou Y, Zhang Z, Yang J, Ge Y, Cheng Q (2022) Machine learning and singularity analysis reveal zircon fertility and magmatic intensity: implications for porphyry copper potential. Nat Resour Res 31:3061–3078. https://doi.org/10.1007/s11053-022-10122-y

    Article  Google Scholar 

  • (2021) Mineral commodity summaries 2021. U.S. Geological Survey, Reston, VA

    Google Scholar 

Download references

Acknowledgements and Funding

We thank Michael L. Wong, Michael J. Walter, Jason Williams, Xiaogang Ma, and Peter Fox for valuable discussions on this subject. We are grateful to Luca Bindi and Giuseppe Cruciani for their vision, leadership, and professionalism in organizing and facilitating this publication.

Studies on mineral informatics, mineral evolution and mineral ecology have been supported by Alfred P. Sloan Foundation, the W.M. Keck Foundation, the John Templeton Foundation, the NASA Astrobiology Institute ENIGMA team, the National Science Foundation, the Deep-time Digital Earth program, a private foundation, and the Carnegie Institution for Science. Any opinions, findings or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirudh Prabhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prabhu, A., Morrison, S.M., Hazen, R.M. (2023). Mineral Informatics: Origins. In: Bindi, L., Cruciani, G. (eds) Celebrating the International Year of Mineralogy. Springer Mineralogy. Springer, Cham. https://doi.org/10.1007/978-3-031-28805-0_3

Download citation

Publish with us

Policies and ethics