Skip to main content

Development of 2D Nanomaterials-Based Sensors for Detection of Toxic Environmental Pollutants

  • Chapter
  • First Online:
Two-Dimensional Materials for Environmental Applications

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 332))

  • 373 Accesses

Abstract

The global environmental pollution crisis is an ever-increasing issue due to human-induced factors such as urbanization and industrialization. Toxic environmental pollutants such as pesticides, dyes, polycyclic aromatic hydrocarbons, heavy metals, etc., threaten human health and the environment. Therefore, the development of rapid, affordable, selective, and sensitive sensing platforms for determining toxic environmental pollutants is a significant necessity. Today, many methods with the features to overcome the disadvantages of traditional sensors are being developed. Among these, electrochemical sensors stand out with features, such as short analysis time, high sensitivity, versatility, miniaturization, and low cost. Due to their unique chemical and physical characteristics, two-dimensional (2D) nanomaterials, such as graphene and its derivatives, transition metal oxides, graphitic carbon nitride, and metal dichalcogenides, are widely used to improve electrochemical sensors performance thanks to their high surface area, porosity, and catalytic effects. In this chapter, the determination of the most important toxic environmental pollutants in various environmental samples with 2D nanomaterials-based optical and electrochemical sensors are overviewed, covering the years between 2016 and 2022.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Saravanan, P.S. Kumar, D.V.N. Vo, S. Jeevanantham, S. Karishma, P.R. Yaashikaa, A review on catalytic-enzyme degradation of toxic environmental pollutants: microbial enzymes. J. Hazard. Mater. 419, 126451 (2021)

    Article  Google Scholar 

  2. A. Rhouati, M. Berkani, Y. Vasseghian, N. Golzadeh, MXene-based electrochemical sensors for detection of environmental pollutants: a comprehensive review. Chemosphere 291, 132921 (2022)

    Article  Google Scholar 

  3. R. Chormare, M. Anil, Environmental health and risk assessment metrics with special mention to biotransfer, bioaccumulation and biomagnification of environmental pollutants. Chemosphere 302, 134836 (2022)

    Article  Google Scholar 

  4. S. Wasi, S. Tabrez, M. Ahmad, Toxicological effects of major environmental pollutants: an overview. Environ. Monit. Assess. 185, 2585–2593 (2013)

    Article  Google Scholar 

  5. A. Saravanan, P.S. Kumar, R.V. Hemavathy, S. Jeevanantham, P. Harikumar, G. Priyanka, D.R.A. Devakirubai, A comprehensive review on sources, analysis and toxicity of environmental pollutants and its removal methods from water environment. Sci. Total Environ. 812, 152456 (2022)

    Article  Google Scholar 

  6. T.M. Murray, PBT (Persistent, Bioaccumulative, and Toxic) Chemicals, Third Edit. Encycl Toxicol Third Ed (2014). https://doi.org/10.1016/B978-0-12-386454-3.00641-2

  7. H. Xu, Y. Jia, Z. Sun, J. Su, Q.S. Liu, Q. Zhou, G. Jiang, Environmental pollution, a hidden culprit for health ıssues. Eco-Environ. Heal. (2022). https://doi.org/10.1016/j.eehl.2022.04.003

  8. A. Shakeel, K. Rizwan, U. Farooq, S. Iqbal, T. Iqbal, N.S. Awwad, H.A. Ibrahium, Polymer based nanocomposites: a strategic tool for detection of toxic pollutants in environmental matrices. Chemosphere (2022). https://doi.org/10.1016/j.chemosphere.2022.134923

    Article  Google Scholar 

  9. X. Wu, P. Ma, Y. Sun, F. Du, D. Song, G. Xu, Application of MXene in electrochemical sensors: a review. Electroanalysis 33, 1827–1851 (2021)

    Article  Google Scholar 

  10. S. Kurbanoglu, S.A. Ozkan, Electrochemical carbon based nanosensors: a promising tool in pharmaceutical and biomedical analysis. J. Pharm. Biomed. Anal. 147, 439–457 (2018)

    Article  Google Scholar 

  11. A. Murali, G. Lokhande, K.A. Deo, A. Brokesh, A.K. Gaharwar, Emerging 2D nanomaterials for biomedical applications. Mater. Today 50, 276–302 (2021)

    Article  Google Scholar 

  12. Y. Zhou, H. Yin, S. Ai, Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: a comprehensive review. Coord. Chem. Rev. 447, 214156 (2021)

    Article  Google Scholar 

  13. V. Revuri, Y.K. Lee, 2D material-based hybrid nanostructure for diagnosis and therapy, in Biomedical Applications of Graphene and 2D Nanomaterials (Elsevier Inc., 2019), pp. 143–164

    Google Scholar 

  14. J. Singhal, S. Verma, S. Kumar, The physio-chemical properties and applications of 2D nanomaterials in agricultural and environmental sustainability. Sci. Total Environ. (2022). https://doi.org/10.1016/j.scitotenv.2022.155669

    Article  Google Scholar 

  15. T. Rasheed, C. Li, M. Bilal, C. Yu, H.M.N. Iqbal, Potentially toxic elements and environmentally-related pollutants recognition using colorimetric and ratiometric fluorescent probes. Sci. Total Environ. 640–641, 174–193 (2018)

    Article  Google Scholar 

  16. A. Valavanidis, T. Vlahogianni, M. Dassenakis, M. Scoullos, Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol. Environ. Saf. 64, 178–189 (2006)

    Article  Google Scholar 

  17. K.H. Al-Gubory, Environmental pollutants and lifestyle factors induce oxidative stress and poor prenatal development. Reprod. Biomed. Online 29, 17–31 (2014)

    Article  Google Scholar 

  18. P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy Metal Toxicity and the Environment (2012), pp. 133–164

    Google Scholar 

  19. J. Briffa, E. Sinagra, R. Blundell, Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6, e04691 (2020)

    Article  Google Scholar 

  20. H. Kaur, H. Garg, Pesticides: Environmental Impacts and Management Strategies. Pestic. Toxic Asp. (2014). https://doi.org/10.5772/57399

    Article  Google Scholar 

  21. W. Aktar, D. Sengupta, A. Chowdhury, Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip. Toxicol. 2, 1–12 (2009)

    Article  Google Scholar 

  22. M. Laraia, Radioactive contamination and other environmental impacts of waste from nuclear and conventional power plants, medical and other industrial sources, in Environmental Remediation and Restoration of Contaminated Nuclear and Norm Sites (Elsevier, 2015), pp. 35–56

    Google Scholar 

  23. B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile, J.C. Polonio, Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 3, 275–290 (2019)

    Article  Google Scholar 

  24. K. Rehman, T. Shahzad, A. Sahar, S. Hussain, F. Mahmood, M.H. Siddique, M.A. Siddique, M.I. Rashid, Effect of reactive black 5 azo dye on soil processes related to C and N cycling. PeerJ 6, e4802 (2018)

    Article  Google Scholar 

  25. H.I. Abdel-Shafy, M.S.M. Mansour, A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J. Pet. 25, 107–123 (2016)

    Article  Google Scholar 

  26. S. Gan, E.V. Lau, H.K. Ng, Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J. Hazard Mater. 172, 532–549 (2009)

    Article  Google Scholar 

  27. Z. Rafiei-Sarmazdeh, S. Morteza Zahedi-Dizaji, A. Kafi Kang, Two-dimensional nanomaterials. Nanostructures (2020). https://doi.org/10.5772/intechopen.85263

    Article  Google Scholar 

  28. T. Hu, X. Mei, Y. Wang, X. Weng, R. Liang, M. Wei, Two-dimensional nanomaterials: fascinating materials in biomedical field. Sci. Bull. 64, 1707–1727 (2019)

    Article  Google Scholar 

  29. N. Baig, M. Sajid, T.A. Saleh, Recent trends in nanomaterial-modified electrodes for electroanalytical applications. TrAC-Trends Anal. Chem. 111, 47–61 (2019)

    Article  Google Scholar 

  30. T.Y. Huang, J.H. Huang, H.Y. Wei, K.C. Ho, C.W. Chu, RGO/SWCNT composites as novel electrode materials for electrochemical biosensing. Biosens. Bioelectron. 43, 173–179 (2013)

    Article  Google Scholar 

  31. R.H. AL-Ammari, A.A. Ganash, M.A. Salam, Electrochemical molecularly imprinted polymer based on zinc oxide/graphene/poly(o-phenylenediamine) for 4-chlorophenol detection. Synth. Met. 254, 141–152 (2019)

    Google Scholar 

  32. V. Kumar, M. Shorie, A.K. Ganguli, P. Sabherwal, Graphene-CNT nanohybrid aptasensor for label free detection of cardiac biomarker myoglobin. Biosens. Bioelectron. 72, 56–60 (2015)

    Article  Google Scholar 

  33. X. Chen, H. Li, G. Zhang, S. Feng, G. Yang, L. Shi, Au@Pt hybrid nanorods encapsulated in B S dual-doped graphene as highly sensitive ımmunosensing platform for electrochemical determination of aflatoxin B1, vol 15 (2020), pp. 6269–6289

    Google Scholar 

  34. Y. Zheng, Z. Liu, H. Zhan, J. Li, C. Zhang, Studies on electrochemical organophosphate pesticide (OP) biosensor design based on ionic liquid functionalized graphene and a Co3O4 nanoparticle modified electrode. Anal. Methods 8, 5288–5295 (2016)

    Article  Google Scholar 

  35. R. Chokkareddy, G.G. Redhi, Fe3O4 nanorods-RGO-ionic liquid nanocomposite based electrochemical sensor for aflatoxin B1 in ground paprika (2021). https://doi.org/10.1002/elan.202100377

  36. S. Su, S. Chen, C. Fan, Recent advances in two-dimensional nanomaterials-based electrochemical sensors for environmental analysis. Green Energy Environ. 3, 97–106 (2018)

    Article  Google Scholar 

  37. V.T. Le, Y. Vasseghian, E.N. Dragoi, M. Moradi, A. Mousavi Khaneghah, A review on graphene-based electrochemical sensor for mycotoxins detection. Food Chem. Toxicol. 148, 111931 (2021)

    Article  Google Scholar 

  38. Y. Vasseghian, E.N. Dragoi, F. Almomani, V.T. Le, Graphene-based materials for metronidazole degradation: a comprehensive review. Chemosphere 286, 131727 (2022)

    Article  Google Scholar 

  39. C.W. Lee, J.M. Suh, H.W. Jang, Chemical sensors based on two-dimensional (2D) materials for selective detection of ions and molecules in liquid. Front. Chem. (2019). https://doi.org/10.3389/fchem.2019.00708

    Article  Google Scholar 

  40. K. Sridhar, B.S. Inbaraj, B.-H. Chen, An improved surface enhanced Raman spectroscopic method using a paper-based grape skin-gold nanoparticles/graphene oxide substrate for detection of rhodamine 6G in water and food. Chemosphere 301, 134702 (2022)

    Article  Google Scholar 

  41. S.K. Krishnan, E. Singh, P. Singh, M. Meyyappan, H.S. Nalwa, A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv. 9, 8778–8881 (2019)

    Article  Google Scholar 

  42. W. Yun, H. Wu, X. Liu, M. Fu, J. Jiang, Y. Du, L. Yang, Y. Huang, Simultaneous fluorescent detection of multiple metal ions based on the DNAzymes and graphene oxide. Anal. Chim. Acta 986, 115–121 (2017)

    Article  Google Scholar 

  43. K. Daoudi, M. Gaidi, S. Columbus, M. Shameer, H. Alawadhi, Hierarchically assembled silver nanoprism-graphene oxide-silicon nanowire arrays for ultrasensitive surface enhanced Raman spectroscopy sensing of atrazine. Mater. Sci. Semicond. Process 138, 106288 (2022)

    Article  Google Scholar 

  44. X. Zhu, L. Lin, R. Wu, Y. Zhu, Y. Sheng, P. Nie, P. Liu, L. Xu, Y. Wen, Portable wireless intelligent sensing of ultra-trace phytoregulator α-naphthalene acetic acid using self-assembled phosphorene/Ti3C2-MXene nanohybrid with high ambient stability on laser induced porous graphene as nanozyme flexible electrode. Biosens. Bioelectron. 179, 113062 (2021)

    Article  Google Scholar 

  45. R. Huang, D. Liao, Z. Liu, J. Yu, X. Jiang, Electrostatically assembling 2D hierarchical Nb2CTx and zifs-derivatives into Zn-Co-NC nanocage for the electrochemical detection of 4-nitrophenol. Sens. Actuators, B Chem. 338, 129828 (2021)

    Article  Google Scholar 

  46. N. Colozza, M.F. Gravina, L. Amendola, M. Rosati, D.E. Akretche, D. Moscone, F. Arduini, A miniaturized bismuth-based sensor to evaluate the marine organism Styela plicata bioremediation capacity toward heavy metal polluted seawater. Sci. Total Environ. 584–585, 692–700 (2017)

    Article  Google Scholar 

  47. M. Baghayeri, H. Alinezhad, M. Fayazi, M. Tarahomi, R. Ghanei-Motlagh, B. Maleki, A novel electrochemical sensor based on a glassy carbon electrode modified with dendrimer functionalized magnetic graphene oxide for simultaneous determination of trace Pb(II)and Cd(II). Electrochim. Acta 312, 80–88 (2019)

    Article  Google Scholar 

  48. Z. Xu, X. Fan, Q. Ma, B. Tang, Z. Lu, J. Zhang, G. Mo, J. Ye, J. Ye, A sensitive electrochemical sensor for simultaneous voltammetric sensing of cadmium and lead based on Fe3O4/multiwalled carbon nanotube/laser scribed graphene composites functionalized with chitosan modified electrode. Mater. Chem. Phys. 238, 121877 (2019)

    Article  Google Scholar 

  49. L.D. Nguyen, T.C.D. Doan, T.M. Huynh, V.N.P. Nguyen, H.H. Dinh, D.M.T. Dang, C.M. Dang, An electrochemical sensor based on polyvinyl alcohol/chitosan-thermally reduced graphene composite modified glassy carbon electrode for sensitive voltammetric detection of lead. Sens. Actuators B Chem. 345, 130443 (2021)

    Article  Google Scholar 

  50. M.R. Mahmoudian, Y. Alias, P. Meng Woi, R. Yousefi, W.J. Basirun, An electrochemical sensor based on Pt/g-C3N4/polyaniline nanocomposite for detection of Hg2+. Adv. Powder Technol. 31, 3372–3380 (2020)

    Article  Google Scholar 

  51. M. Baghayeri, M. Ghanei-Motlagh, R. Tayebee, M. Fayazi, F. Narenji, Application of graphene/zinc-based metal-organic framework nanocomposite for electrochemical sensing of As(III) in water resources. Anal. Chim. Acta 1099, 60–67 (2020)

    Article  Google Scholar 

  52. P. Lei, Y. Zhou, S. Zhao, C. Dong, S. Shuang, Carbon-supported X-manganate ( XNi, Zn, and Cu ) nanocomposites for sensitive electrochemical detection of trace heavy metal ions. J. Hazard. Mater. 435, 129036 (2022)

    Article  Google Scholar 

  53. J. Wang, P. Yu, K. Kan, H. Lv, Z. Liu, B. Sun, X. Bai, J. Chen, Y. Zhang, K. Shi, Efficient ultra-trace electrochemical detection of Cd2+, Pb2+ and Hg2+ based on hierarchical porous S-doped C3N4 tube bundles/graphene nanosheets composite. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2021.130317

    Article  Google Scholar 

  54. Q. Shan, J. Tian, Q. Ding, W. Wu, Electrochemical sensor based on metal-free materials composed of graphene and graphene oxide for sensitive detection of cadmium ions in water. Mater. Chem. Phys. 284, 126064 (2022)

    Article  Google Scholar 

  55. R. Wang, C.Y. Xıong, Y. Xıe, M.J. Han, Y.H. Xu, C. Bıan, S.H. Xıa, Electrochemical sensor based on MoS2 nanosheets and DNA hybridization for trace mercury detection. Chin. J. Anal. Chem. 50, 100066 (2022)

    Google Scholar 

  56. S. Duan, Y. Huang, Electrochemical sensor using NH2-MIL-88(Fe)-rGO composite for trace Cd2+, Pb2+, and Cu2+ detection. J. Electroanal. Chem. 807, 253–260 (2017)

    Article  Google Scholar 

  57. M.R. Mahmoudian, W.J. Basirun, Y. Alias, P. MengWoi, Investigating the effectiveness of g-C3N4 on Pt /g-C3N4/ polythiophene nanocomposites performance as an electrochemical sensor for Hg2+ detection. J Environ Chem Eng 8, 104204 (2020)

    Article  Google Scholar 

  58. G. Chen, W. Bai, Y. Jin, J. Zheng, Fluorescence and electrochemical assay for bimodal detection of lead ions based on Metal-Organic framework nanosheets. Talanta 232, 122405 (2021)

    Article  Google Scholar 

  59. X. Fang, Z. Zeng, Q. Li, Y. Liu, W. Chu, T. Maiyalagan, S. Mao, Ultrasensitive detection of disinfection byproduct trichloroacetamide in drinking water with Ag nanoprism@MoS2 heterostructure-based electrochemical sensor. Sens. Actuators B Chem. 332, 129526 (2021)

    Article  Google Scholar 

  60. Y. Wang, Y. Liang, S. Zhang, T. Wang, X. Zhuang, C. Tian, F. Luan, S.Q. Ni, X. Fu, Enhanced electrochemical sensor based on gold nanoparticles and MoS2 nanoflowers decorated ionic liquid-functionalized graphene for sensitive detection of bisphenol A in environmental water. Microchem. J. 161, 105769 (2021)

    Article  Google Scholar 

  61. T.S. Martins, J.L. Bott-Neto, O.N. Oliveira, S.A.S. Machado, Paper-based electrochemical sensors with reduced graphene nanoribbons for simultaneous detection of sulfamethoxazole and trimethoprim in water samples. J. Electroanal. Chem. (2021). https://doi.org/10.1016/j.jelechem.2021.114985

    Article  Google Scholar 

  62. X. Chen, R. Li, Y. Li, Y. Wang, F. Zhang, M. Zhang, Research of the multifunctional rGO/MoS2 material in the sensing field: Human breathing and Hg(II) pollution detection. Mater. Sci. Semicond. Process (2022). https://doi.org/10.1016/j.mssp.2021.106268

    Article  Google Scholar 

  63. X. Zhang, D. An, Z. Bi, W. Shan, B. Zhu, L. Zhou, L. Yu, H. Zhang, S. Xia, M. Qiu, Ti3C2-MXene@N-doped carbon heterostructure-based electrochemical sensor for simultaneous detection of heavy metals. J. Electroanal. Chem. 911, 116239 (2022)

    Article  Google Scholar 

  64. H.S. El-Desoky, A.M. Beltagi, M.M. Ghoneim, A.I. El-Hadad, The first utilization of graphene nano-sheets and synthesized Fe3O4 nanoparticles as a synergistic electrodeposition platform for simultaneous voltammetric determination of some toxic heavy metal ions in various real environmental water samples. Microchem J 175, 106966 (2022)

    Article  Google Scholar 

  65. X. Yue, Z. Li, S. Zhao, A new electrochemical sensor for simultaneous detection of sulfamethoxazole and trimethoprim antibiotics based on graphene and ZnO nanorods modified glassy carbon electrode. Microchem J. 159, 105440 (2020)

    Article  Google Scholar 

  66. N.S. Prado, L.A.J. Silva, R.M. Takeuchi, E.M. Richter, A.L. dos Santos, E.H.L. Falcão, Graphite sheets modified with poly(methylene blue) films: A cost-effective approach for the electrochemical sensing of the antibiotic nitrofurantoin. Microchem J (2022). https://doi.org/10.1016/j.microc.2022.107289

    Article  Google Scholar 

  67. A. Sinha, K. Ma, H. Zhao, 2D Ti3C2Tx flakes prepared by in-situ HF etchant for simultaneous screening of carbamate pesticides. J. Colloid Interface Sci. 590, 365–374 (2021)

    Article  Google Scholar 

  68. X. Wang, M. Li, S. Yang, J. Shan, A novel electrochemical sensor based on TiO2–Ti3C2TX/CTAB/chitosan composite for the detection of nitrite. Electrochim. Acta 359, 136938 (2020)

    Article  Google Scholar 

  69. S. Hu, Q. Fei, Y. Li, B. Wang, Y. Yu, Br-terminated 2D Bi2WO6 nanosheets as a sensitive light-regenerated electrochemical sensor for detecting sulfamethoxazole antibiotic. Surfaces and Interfaces 25, 101302 (2021)

    Article  Google Scholar 

  70. D. Ilager, S.J. Malode, N.P. Shetti, Chemosphere Development of 2D graphene oxide sheets-based voltammetric sensor for electrochemical sensing of fungicide, carbendazim. Chemosphere 303, 134919 (2022)

    Article  Google Scholar 

  71. M.L. Yola, Electrochemical activity enhancement of monodisperse boron nitride quantum dots on graphene oxide: Its application for simultaneous detection of organophosphate pesticides in real samples. J. Mol. Liq. 277, 50–57 (2019)

    Article  Google Scholar 

  72. L. Killedar, D. Ilager, S.J. Malode, N.P. Shetti, Fast and facile electrochemical detection and determination of fungicide carbendazim at titanium dioxide designed carbon-based sensor. Mater. Chem. Phys. 285, 126131 (2022)

    Article  Google Scholar 

  73. Ö.S. Bölükbaşı, B.B. Yola, H. Boyacıoğlu, M.L. Yola, A novel paraoxon imprinted electrochemical sensor based on MoS2NPs@MWCNTs and its application to tap water samples. Food Chem. Toxicol. (2022). https://doi.org/10.1016/j.fct.2022.112994

    Article  Google Scholar 

  74. Y. Wang, Y. Wang, F. Wang, H. Chi, G. Zhao, Y. Zhang, T. Li, Q. Wei, Electrochemical aptasensor based on gold modified thiol graphene as sensing platform and gold-palladium modified zirconium metal-organic frameworks nanozyme as signal enhancer for ultrasensitive detection of mercury ions. J. Colloid Interface Sci. 606, 510–517 (2022)

    Article  Google Scholar 

  75. Y. Wang, Z. Nie, X. Li, Y. Zhao, H. Wang, Highly sensitive and selective electrochemical sensor based on porous graphitic carbon nitride/CoMn2O4 nanocomposite toward heavy metal ions. Sens. Actuators B Chem. 346, 130539 (2021)

    Article  Google Scholar 

  76. N. Jayaraman, Y. Palani, R. Rao, Sensors and Actuators: B. Chemical Covalently dual functionalized graphene oxide-based multiplex electrochemical sensor for Hg (II) and Cr (VI) detection. Sens. Actuators B Chem. 367, 132165 (2022)

    Google Scholar 

  77. J.A. Buledi, A.R. Solangi, A. Hyder et al., Selective oxidation of amaranth dye in soft drinks through tin oxide decorated reduced graphene oxide nanocomposite based electrochemical sensor. Food Chem. Toxicol. 165, 113177 (2022)

    Article  Google Scholar 

  78. M. Eswaran, P.C. Tsai, M.T. Wu, V.K. Ponnusamy, Novel nano-engineered environmental sensor based on polymelamine/graphitic-carbon nitride nanohybrid material for sensitive and simultaneous monitoring of toxic heavy metals. J. Hazard. Mater. 418, 126267 (2021)

    Article  Google Scholar 

  79. Y. Xu, Y. Yu, S. Xue, X. Ma, H. Tao, Innovative electrochemical sensor based on graphene oxide aerogel wrapped copper centered metal-organic framework to detect catechol. J. Electroanal. Chem. 899, 115686 (2021)

    Article  Google Scholar 

  80. Q.-X. Bao, Y. Liu, Y.-Q. Liang, R. Weerasooriya, H. Li, Y.-C. Wu, X. Chen, Tea polyphenols mediated Zero-valent Iron/Reduced graphene oxide nanocomposites for electrochemical determination of Hg2+. J. Electroanal. Chem. 917, 116428 (2022)

    Article  Google Scholar 

  81. S.E. Jeong, S. Kim, J.H. Han, J.J. Pak, Simple laser-induced graphene fiber electrode fabrication for high-performance heavy-metal sensing. Microchem. J. 172, 106950 (2022)

    Article  Google Scholar 

  82. X. Du, W. Du, J. Sun, D. Jiang, Self-powered photoelectrochemical sensor for chlorpyrifos detection in fruit and vegetables based on metal–ligand charge transfer effect by Ti3C2 based Schottky junction. Food Chem. 385, 132731 (2022)

    Article  Google Scholar 

  83. J. Chen, Y. Chen, Y. Liang, Application of chitosan-N-doped graphene oxide ion-imprinted sensor in Cd (II) ions detection. Diam. Relat. Mater. 119, 108591 (2021)

    Article  Google Scholar 

  84. E.B. Kim, M. Imran, E.H. Lee, M.S. Akhtar, S. Ameen, Multiple ions detection by field-effect transistor sensors based on ZnO@GO and ZnO@rGO nanomaterials: Application to trace detection of Cr (III) and Cu (II). Chemosphere 286, 131695 (2022)

    Article  Google Scholar 

  85. R. Karthik, S. Thambidurai, Synthesis of cobalt doped ZnO/reduced graphene oxide nanorods as active material for heavy metal ions sensor and antibacterial activity. J. Alloys Compd. 715, 254–265 (2017)

    Article  Google Scholar 

  86. M. Akhtar, A. Tahir, S. Zulfiqar, F. Hanif, M.F. Warsi, P.O. Agboola, I. Shakir, Ternary hybrid of polyaniline-alanine-reduced graphene oxide for electrochemical sensing of heavy metal ions. Synth. Met. (2020). https://doi.org/10.1016/j.synthmet.2020.116410

    Article  Google Scholar 

  87. K. Pramanik, P. Sarkar, D. Bhattacharyay, Semi-quantitative colorimetric and supersensitive electrochemical sensors for mercury using rhodamine b hydrazide thio derivative. J. Mol. Liq. 276, 141–152 (2019)

    Article  Google Scholar 

  88. Y. Liu, G.L. Wen, X. Chen, R. Weerasooriya, Z.Y. Hong, L.C. Wang, Z.J. Huang, Y.C. Wu, Construction of electrochemical sensing interface towards Cd(II) based on activated g-C3N4 nanosheets: considering the effects of exfoliation and protonation treatment. Anal. Bioanal. Chem. 412, 343–353 (2020)

    Article  Google Scholar 

  89. M. Wang, R. Fu, C. Jin, Z. Li, J. Sun, P. Yu, M. You, The facile fabrication of g-C 3 N 4 ultrathin nanosheets with higher specific surface areas for highly sensitive detection of trace cadmium. Meas. J. Int. Meas. Confed. 140, 548–556 (2019)

    Article  Google Scholar 

  90. K. Kunpatee, K. Kaewdorn, J. Duangtong, S. Chaiyo, O. Chailapakul, K. Kalcher, M. Kerr, A. Samphao, A new disposable electrochemical sensor for the individual and simultaneous determination of carbamate pesticides using a nanocomposite modified screen-printed electrode. Microchem. J. 177, 107318 (2022)

    Article  Google Scholar 

  91. Q. Zhao, W. Wu, X. Wei, S. Jiang, T. Zhou, Q. Li, Q. Lu, Graphitic carbon nitride as electrode sensing material for tetrabromobisphenol-A determination. Sens. Actuators B Chem. 248, 673–681 (2017)

    Article  Google Scholar 

  92. W. Gao, X. Wang, P. Li, Q. Wu, F. Qi, S. Wu, Y. Yu, K. Ding, Highly sensitive and selective detection of cadmium with a graphite carbon nitride nanosheets/Nafion electrode. RSC Adv. 6, 113570–113575 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibel A. Ozkan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaya, S.I., Yence, M., Ozcelikay, G., Cetinkaya, A., Budak, F., Ozkan, S.A. (2023). Development of 2D Nanomaterials-Based Sensors for Detection of Toxic Environmental Pollutants. In: Kumar, N., Gusain, R., Sinha Ray, S. (eds) Two-Dimensional Materials for Environmental Applications. Springer Series in Materials Science, vol 332. Springer, Cham. https://doi.org/10.1007/978-3-031-28756-5_9

Download citation

Publish with us

Policies and ethics