Skip to main content

Adsorptive Removal of Pollutants Using Graphene-based Materials for Water Purification

  • Chapter
  • First Online:
Two-Dimensional Materials for Environmental Applications

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 332))

Abstract

Adsorption methods have been employed for pollution control as well as cleanup all around the world. Composite materials have been the most suitable candidates for high-standard adsorption systems. So also, when merged with graphene or its derivatives, they become very effective candidates for adsorbing environmental contaminants found in water. The combined effect of graphene oxide, as well as its engineered material nanostructures (hybrids, composites, etc.), has also been shown to significantly contribute to the adsorption of heavy metals, toxic organic chemicals (colorants, diverse volatile organic compounds (VOCs), pesticides, chemical fertilizer, drugs), as well as other suspended particles pollutants of water, particularly industrial effluents. The broad surfaces of graphene oxide's derivatives and nanocomposites are bonded with a variety of reactionary oxygen-containing functionalities, giving them exceptional stability and adsorption efficiency in an aqueous environment. This also enables them to be recycled for numerous adsorption–desorption cycles. The present chapter discusses all of these graphene-based materials, their adsorption phenomena, and their application to water to cleanse and purify it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Ali et al., Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ. Int. 127, 160–180 (2019)

    Article  Google Scholar 

  2. M.D.F. Hossain, N. Akther, Y. Zhou, Recent advancements in graphene adsorbents for wastewater treatment: current status and challenges. Chinese Chem. Lett. 31(10), 2525–2538 (2020)

    Article  Google Scholar 

  3. N. Khatri, S. Tyagi, Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 8(1), 23–39 (2015)

    Article  Google Scholar 

  4. V. Masindi, K.L. Muedi, Environmental contamination by heavy metals. Heavy Metals 10, 115–132 (2018)

    Google Scholar 

  5. F.E. Titchou et al., Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes. Chem. Eng. Proc. Proc. Intensific. 169, 108631 (2021)

    Article  Google Scholar 

  6. R.R.L. Vidal, J.S. Moraes, Removal of organic pollutants from wastewater using chitosan: a literature review. Int. J. Environ. Sci. Technol. 16(3), 1741–1754 (2019)

    Article  Google Scholar 

  7. J.T. Orasugh, S.S. Ray, Nanocellulose-graphene oxide-based nanocomposite for adsorptive water treatment, in Functional Polymer Nanocomposites for Wastewater Treatment. (Springer, 2022), pp.1–53

    Google Scholar 

  8. Z.-H. Huang et al., Adsorption of lead (II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir 27(12), 7558–7562 (2011)

    Article  Google Scholar 

  9. J.L. Wang, L.J. Xu, Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit. Rev. Environ. Sci. Technol. 42(3), 251–325 (2012)

    Article  Google Scholar 

  10. G. Ciardelli, L. Corsi, M. Marcucci, Membrane separation for wastewater reuse in the textile industry. Resour. Conserv. Recycl. 31(2), 189–197 (2001)

    Article  Google Scholar 

  11. A. Bodalo-Santoyo et al., Application of reverse osmosis to reduce pollutants present in industrial wastewater. Desalination 155(2), 101–108 (2003)

    Article  Google Scholar 

  12. S.K. Nataraj, K.M. Hosamani, T.M. Aminabhavi, Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes. Water Res. 40(12), 2349–2356 (2006)

    Article  Google Scholar 

  13. T.R. Harper, N.W. Kingham, Removal of arsenic from wastewater using chemical precipitation methods. Water Environ. Res. 64(3), 200–203 (1992)

    Article  Google Scholar 

  14. R. Bochenek, R. Sitarz, D. Antos, Design of continuous ion exchange process for the wastewater treatment. Chem. Eng. Sci. 66(23), 6209–6219 (2011)

    Article  Google Scholar 

  15. E. Ofir et al., Boron removal from seawater by electro-chemical treatment as part of water desalination. Desalin. Water Treat. 31(1–3), 102–106 (2011)

    Article  Google Scholar 

  16. T. Pickett, J. Sonstegard, B. Bonkoski, Using biology to treat selenium: biologically treating scrubber wastewater can be an attractive alternative to physical-chemical treatment. Power Eng. 110(11), 140–143 (2006)

    Google Scholar 

  17. H. Liu, H. Qiu, Recent advances of 3D graphene-based adsorbents for sample preparation of water pollutants: a review. Chem. Eng. J. 393, 124691 (2020)

    Article  Google Scholar 

  18. M.S. Ali, J.T. Orasugh, D. Chattopadhyay, Bacillus subtilis-based biofilms, in Application of Biofilms in Applied Microbiology, ed. by M.P. Shah, (Elsevier, Elsevier, 2022)

    Google Scholar 

  19. M.M.-A. Aslam et al., Functionalized carbon nanotubes (Cnts) for water and wastewater treatment: preparation to application. Sustainability 13(10), 5717 (2021)

    Article  Google Scholar 

  20. M. Kumari et al., Transformation of solid plastic waste to activated carbon fibres for wastewater treatment. Chemosphere 294, 133692 (2022)

    Article  Google Scholar 

  21. H. Es-sahbany et al., Adsorption of heavy metal (Cadmium) in synthetic wastewater by the natural clay as a potential adsorbent (Tangier-Tetouan-Al Hoceima-Morocco region). Mater. Today Proc. 45, 7299–7305 (2021)

    Article  Google Scholar 

  22. A. Sarı, T.A. Saleh, M. Tuzen, Development and characterization of polymer-modified vermiculite composite as novel highly-efficient adsorbent for water treatment. Surfaces Interfaces 27, 101504 (2021)

    Article  Google Scholar 

  23. A.A. Al-Gheethi et al., Sustainable approaches for removing Rhodamine B dye using agricultural waste adsorbents: a review. Chemosphere 287, 132080 (2022)

    Article  Google Scholar 

  24. I. Anastopoulos et al., Sunflower-biomass derived adsorbents for toxic/heavy metals removal from (waste) water. J. Mol. Liq. 342, 117540 (2021)

    Article  Google Scholar 

  25. Z.-D. Peng et al., Removal of cadmium from wastewater by magnetic zeolite synthesized from natural, low-grade molybdenum. Sci. Total Environ. 772, 145355 (2021)

    Article  Google Scholar 

  26. T. Sattar, Current review on synthesis, composites and multifunctional properties of graphene. Top. Curr. Chem. 377(2), 1–45 (2019)

    MathSciNet  Google Scholar 

  27. H. Shinohara, A. Tiwari, Graphene: An Introduction to The Fundamentals and Industrial Applications. (John Wiley & Sons, 2015)

    Google Scholar 

  28. D.P. DiVincenzo, E.J. Mele, Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds. Phys. Rev. B 29(4), 1685 (1984)

    Article  Google Scholar 

  29. A. Geim, Many pioneers in graphene discovery. APS News 19(1), 4 (2010)

    Google Scholar 

  30. Y. Huang et al., Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11(1), 1–9 (2020)

    MathSciNet  Google Scholar 

  31. G. Borand, N. Akçamlı, D. Uzunsoy, Structural characterization of graphene nanostructures produced via arc discharge method. Ceram. Int. 47(6), 8044–8052 (2021)

    Article  Google Scholar 

  32. A. Kaur, J. Kaur, R.C. Singh, Tailor made exfoliated reduced graphene oxide nanosheets based on oxidative-exfoliation approach. Fullerenes Nanotubes Carbon Nanostruct. 26(1), 1–11 (2018)

    Article  Google Scholar 

  33. Y. Xu et al., Liquid-phase exfoliation of graphene: an overview on exfoliation media, techniques, and challenges. Nanomaterials 8(11), 942 (2018)

    Article  Google Scholar 

  34. A.A. Silva et al., Graphene sheets produced by carbon nanotubes unzipping and their performance as supercapacitor. Appl. Surf. Sci. 446, 201–208 (2018)

    Article  Google Scholar 

  35. X.J. Lee et al., Review on graphene and its derivatives: synthesis methods and potential industrial implementation. J. Taiwan Inst. Chem. Eng. 98, 163–180 (2019)

    Article  Google Scholar 

  36. M. Saeed et al., Chemical vapour deposition of graphene—synthesis, characterisation, and applications: a review. Molecules 25(17), 3856 (2020)

    Article  Google Scholar 

  37. G. Li et al., Epitaxial growth and physical properties of 2D materials beyond graphene: from monatomic materials to binary compounds. Chem. Soc. Rev. 47(16), 6073–6100 (2018)

    Article  Google Scholar 

  38. Y. Sun, J. Zhang, Strategies for scalable gas-phase preparation of free-standing graphene. CCS Chem. 3(4), 1058–1077 (2021)

    Article  Google Scholar 

  39. Y. Yang et al., Bottom-up fabrication of graphene on silicon/silica substrate via a facile soft-hard template approach. Sci. Rep. 5(1), 1–7 (2015)

    Google Scholar 

  40. V. Singh et al., Graphene based materials: past, present and future. Prog. Mater Sci. 56(8), 1178–1271 (2011)

    Article  Google Scholar 

  41. A. Ciesielski, P. Samorì, Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 43(1), 381–398 (2014)

    Article  Google Scholar 

  42. B. Liang et al., Organic salt-assisted liquid-phase shear exfoliation of expanded graphite into graphene nanosheets. J. Materiom. 7(6), 1181–1189 (2021)

    Article  Google Scholar 

  43. N. Kumar et al., Top-down synthesis of graphene: a comprehensive review. FlatChem 27, 100224 (2021)

    Article  Google Scholar 

  44. M. Yi, Z. Shen, A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3(22), 11700–11715 (2015)

    Article  Google Scholar 

  45. T.M.D. Alharbi et al., Shear stress mediated scrolling of graphene oxide. Carbon 137, 419–424 (2018)

    Article  Google Scholar 

  46. L. Yasmin et al., Optimising a vortex fluidic device for controlling chemical reactivity and selectivity. Sci. Rep. 3(1), 1–6 (2013)

    Article  Google Scholar 

  47. X. Chen, J.F. Dobson, C.L. Raston, Vortex fluidic exfoliation of graphite and boron nitride. Chem. Commun. 48(31), 3703–3705 (2012)

    Article  Google Scholar 

  48. M.H. Wahid et al., Functional multi-layer graphene–algae hybrid material formed using vortex fluidics. Green Chem. 15(3), 650–655 (2013)

    Article  Google Scholar 

  49. T.S. Tran et al., High shear-induced exfoliation of graphite into high quality graphene by Taylor-Couette flow. RSC Adv. 6(15), 12003–12008 (2016)

    Article  Google Scholar 

  50. M.G. Sumdani et al., Recent advances of the graphite exfoliation processes and structural modification of graphene: a review. J. Nanopart. Res. 23(11), 1–35 (2021)

    Article  Google Scholar 

  51. K.R. Paton et al., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13(6), 624–630 (2014)

    Article  Google Scholar 

  52. Z. Zhang et al., Efficient production of high-quality few-layer graphene using a simple hydrodynamic-assisted exfoliation method. Nanoscale Res Lett 13(1), 416 (2018)

    Article  Google Scholar 

  53. W. Choi, J.-W. Lee, Graphene: synthesis and applications. (CRC press, 2011)

    Google Scholar 

  54. L.M. Viculis, J.J. Mack, R.B. Kaner, A chemical route to carbon nanoscrolls. Science 299(5611), 1361 (2003)

    Article  Google Scholar 

  55. Z. Ereš, S. Hrabar, Low-cost synthesis of high-quality graphene in do-it-yourself CVD reactor. Automatika 59(3–4), 254–260 (2018)

    Article  Google Scholar 

  56. Z. Zhang et al., Top-down bottom-up graphene synthesis. Nano Futures 3(4), 042003 (2019)

    Article  Google Scholar 

  57. A. Moosa, M. Abed, Graphene preparation and graphite exfoliation. Turk. J. Chem. 45(3), 493–519 (2021)

    Article  Google Scholar 

  58. Y. Lee et al., Wafer-scale synthesis and transfer of graphene films. Nano Lett. 10(2), 490–493 (2010)

    Article  Google Scholar 

  59. X. Li et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009)

    Article  Google Scholar 

  60. X. Li et al., Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9(12), 4268–4272 (2009)

    Article  Google Scholar 

  61. S. Jia-Tao et al., Effect of strain on geometric and electronic structures of graphene on a Ru (0001) surface. Chin. Phys. B 18(7), 3008 (2009)

    Article  Google Scholar 

  62. L. Gao et al., Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 3(1), 1–7 (2012)

    Article  MathSciNet  Google Scholar 

  63. D.Y. Usachov et al., Epitaxial B-graphene: large-scale growth and atomic structure. ACS Nano 9(7), 7314–7322 (2015)

    Article  Google Scholar 

  64. B.-J. Park et al., Defect-free graphene synthesized directly at 150 C via chemical vapor deposition with no transfer. ACS Nano 12(2), 2008–2016 (2018)

    Article  Google Scholar 

  65. Y. Yao, C.-P. Wong, Monolayer graphene growth using additional etching process in atmospheric pressure chemical vapor deposition. Carbon 50(14), 5203–5209 (2012)

    Article  Google Scholar 

  66. C.-M. Seah, S.-P. Chai, A.R. Mohamed, Mechanisms of graphene growth by chemical vapour deposition on transition metals. Carbon 70, 1–21 (2014)

    Article  Google Scholar 

  67. N.G. Shang et al., Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Func. Mater. 18(21), 3506–3514 (2008)

    Article  Google Scholar 

  68. A.N. Obraztsov et al., DC discharge plasma studies for nanostructured carbon CVD. Diam. Relat. Mater. 12(3–7), 917–920 (2003)

    Article  Google Scholar 

  69. C. Berger et al., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108(52), 19912–19916 (2004)

    Article  Google Scholar 

  70. M. Choucair, P. Thordarson, J.A. Stride, Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 4(1), 30–33 (2009)

    Article  Google Scholar 

  71. H. Hibino, H. Kageshima, M. Nagase, Graphene growth on silicon carbide. NTT Technical Review (Web). 8(8) (2010)

    Google Scholar 

  72. Z.-Y. Juang et al., Synthesis of graphene on silicon carbide substrates at low temperature. Carbon 47(8), 2026–2031 (2009)

    Article  Google Scholar 

  73. Y. Pan et al., Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Adv. Mater. 21(27), 2777–2780 (2009)

    Article  Google Scholar 

  74. Z. Chen et al., Graphene nano-ribbon electronics. Phys. E 40(2), 228–232 (2007)

    Article  Google Scholar 

  75. D.V. Kosynkin et al., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240), 872–876 (2009)

    Article  Google Scholar 

  76. L. Jiao et al., Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240), 877–880 (2009)

    Article  Google Scholar 

  77. A.G. Cano-Marquez et al., Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. 9(4), 1527–1533 (2009)

    Article  Google Scholar 

  78. J. Liu et al., Graphene oxide nanoribbon as hole extraction layer to enhance efficiency and stability of polymer solar cells. Adv. Mater. 26(5), 786–790 (2014)

    Article  Google Scholar 

  79. W.E. Mahmoud, F.S. Al-Hazmi, G.H. Al-Harbi, Wall by wall controllable unzipping of MWCNTs via intercalation with oxalic acid to produce multilayers graphene oxide ribbon. Chem. Eng. J. 281, 192–198 (2015)

    Article  Google Scholar 

  80. J.T. Orasugh et al., Carbon nanotube and nanofiber reinforced polymer composites, in Encyclopedia of Materials: Plastics and Polymers. ed. by M.S.J. Hashmi (Elsevier, Oxford, 2022), pp.837–859

    Chapter  Google Scholar 

  81. S. Kim et al., An aqueous single reactor arc discharge process for the synthesis of graphene nanospheres. Small 11(38), 5041–5046 (2015)

    Article  Google Scholar 

  82. K.S. Subrahmanyam et al., Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 113(11), 4257–4259 (2009)

    Article  Google Scholar 

  83. C.E.E. Rao, A.E. Sood, Graphene: the new two‐dimensional nanomaterial. Angew. Chem. Int. Ed. 48(42):7752–7777

    Google Scholar 

  84. Z. Wang et al., Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air. Nanotechnology 21(17), 175602 (2010)

    Article  Google Scholar 

  85. T. Szabó et al., Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18(11), 2740–2749 (2006)

    Article  Google Scholar 

  86. A. Lerf et al., Structure of graphite oxide revisited. J. Phys. Chem. B 102(23), 4477–4482 (1998)

    Article  Google Scholar 

  87. H. He et al., Solid-state NMR studies of the structure of graphite oxide. J. Phys. Chem. 100(51), 19954–19958 (1996)

    Article  Google Scholar 

  88. K. Erickson et al., Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 22(40), 4467–4472 (2010)

    Article  Google Scholar 

  89. A. Dimiev et al., Pristine graphite oxide. J. Am. Chem. Soc. 134(5), 2815–2822 (2012)

    Article  Google Scholar 

  90. S. Eigler, A. Hirsch, Chemistry with graphene and graphene oxide—challenges for synthetic chemists. Angew. Chem. Int. Ed. 53(30), 7720–7738 (2014)

    Article  Google Scholar 

  91. J.P. Rourke et al., The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angew. Chem. Int. Ed. 50(14), 3173–3177 (2011)

    Article  Google Scholar 

  92. A.T. Dideikin, A.Y. Vul, Graphene oxide and derivatives: the place in graphene family. Front. Phys. 6, 149 (2019)

    Article  Google Scholar 

  93. L. Sun, Structure and synthesis of graphene oxide. Chin. J. Chem. Eng. 27(10), 2251–2260 (2019)

    Article  Google Scholar 

  94. C. Gómez-Navarro et al., Atomic structure of reduced graphene oxide. Nano Lett. 10(4), 1144–1148 (2010)

    Article  Google Scholar 

  95. D.Y. Kornilov, S.P. Gubin, Graphene oxide: structure, properties, synthesis, and reduction (a review). Russ. J. Inorg. Chem. 65(13), 1965–1976 (2020)

    Article  Google Scholar 

  96. N. Vats et al., Electron microscopy of polyoxometalate ions on graphene by electrospray ion beam deposition. Nanoscale 10(10), 4952–4961 (2018)

    Article  Google Scholar 

  97. Y. Gao et al., Revealing the role of oxygen-containing functional groups on graphene oxide for the highly efficient adsorption of thorium ions. J. Hazard. Mater. 436, 129148 (2022)

    Article  Google Scholar 

  98. S.H. Dave et al., Chemistry and structure of graphene oxide via direct imaging. ACS Nano 10(8), 7515–7522 (2016)

    Article  Google Scholar 

  99. S. Sadhukhan et al., Synthesis of RGO/NiO nanocomposites adopting a green approach and its photocatalytic and antibacterial properties. Mater. Chem. Phys. 247, 122906 (2020)

    Article  Google Scholar 

  100. D. Chen, H. Feng, J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112(11), 6027–6053 (2012)

    Article  Google Scholar 

  101. Q. Lian et al., Enhanced adsorption of resorcinol onto phosphate functionalized graphene oxide synthesized via Arbuzov Reaction: a proposed mechanism of hydrogen bonding and π-π interactions. Chemosphere 280, 130730 (2021)

    Article  Google Scholar 

  102. W. Gao et al., New insights into the structure and reduction of graphite oxide. Nat. Chem. 1(5), 403–408 (2009)

    Article  Google Scholar 

  103. T. Nakajima, Y. Matsuo, Formation process and structure of graphite oxide. Carbon 32(3), 469–475 (1994)

    Article  Google Scholar 

  104. G. Ruess, Über das graphitoxyhydroxyd (graphitoxyd). Monatshefte für Chemie und verwandte Teile anderer Wissenschaften 76(3), 381–417 (1947)

    Article  Google Scholar 

  105. W. Scholz, H.P. Boehm, Untersuchungen am graphitoxid. VI. Betrachtungen zur struktur des graphitoxids. Zeitschrift für anorganische und allgemeine Chemie. 369(3–6), 327–340 (1969)

    Google Scholar 

  106. W. Chen, L. Yan, P.R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48(4), 1146–1152 (2010)

    Article  Google Scholar 

  107. S. Pei, H.-M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012)

    Article  Google Scholar 

  108. K.A.I. Yan et al., Designed CVD growth of graphene via process engineering. Acc. Chem. Res. 46(10), 2263–2274 (2013)

    Article  Google Scholar 

  109. H. Wang et al., Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 131(29), 9910–9911 (2009)

    Article  Google Scholar 

  110. M.K. Rabchinskii et al., Nanoscale perforation of graphene oxide during photoreduction process in the argon atmosphere. J. Phys. Chem. C 120(49), 28261–28269 (2016)

    Article  Google Scholar 

  111. J. Wang, X. Guo, Adsorption kinetic models: physical meanings, applications, and solving methods. J. Hazard. Mater. 390, 122156 (2020)

    Article  Google Scholar 

  112. I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 38(11), 2221–2295 (1916)

    Google Scholar 

  113. Y. Liu, J. Wang, Fundamentals and applications of biosorption isotherms, kinetics and thermodynamics. (Nova Science Publishers, 2009)

    Google Scholar 

  114. R. Sips, On the structure of a catalyst surface. J. Chem. Phys. 16(5), 490–495 (1948)

    Article  Google Scholar 

  115. H. Freundlich, Over the adsorption in solution. J. Phys. chem 57(385471), 1100–1107 (1906)

    Google Scholar 

  116. O. Redlich, D.L. Peterson, A useful adsorption isotherm. J. Phys. Chem. 63(6), 1024–1024 (1959)

    Article  Google Scholar 

  117. A.R. Khan, R. Ataullah, A. Al-Haddad, Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures. J. Colloid Interface Sci. 194(1), 154–165 (1997)

    Article  Google Scholar 

  118. J. Toth, A multicomponent isotherm for liquid adsorption. Acta Chim. Acad. Sci. Hung 69, 311–322 (1971)

    Google Scholar 

  119. C.J. Radke, J.M. Prausnitz, Adsorption of organic solutes from dilute aqueous solution of activated carbon. Ind. Eng. Chem. Fundam. 11(4), 445–451 (1972)

    Article  Google Scholar 

  120. M. Dubinin, The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60(2), 235–241 (1960)

    Article  Google Scholar 

  121. M.M. Majd, et al., Adsorption isotherm models: A comprehensive and systematic review (2010−2020). Sci. Total Environ. 151334 (2021)

    Google Scholar 

  122. T. Grchev et al., Adsorption of polyacrylamide on gold and iron from acidic aqueous solutions. Electrochim. Acta 36(8), 1315–1323 (1991)

    Article  Google Scholar 

  123. P.J. Flory, Thermodynamics of high polymer solutions. J. Chem. Phys. 10(1), 51–61 (1942)

    Article  Google Scholar 

  124. M.L. Huggins, Some properties of solutions of long-chain compounds. J. Phys. Chem. 46(1), 151–158 (1942)

    Article  Google Scholar 

  125. M. Kaisheva, G. Saraivanov, A. Anastopoulos, Adsorption studies of hexadecyltributylphosphonium bromide at the mercury/solution interface through differential capacity measurements. Langmuir 7(10), 2380–2384 (1991)

    Article  Google Scholar 

  126. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)

    Article  Google Scholar 

  127. M.J. Temkin, V. Pyzhev, Recent Modifications to Langmuir Isotherms. (1940)

    Google Scholar 

  128. C. Aharoni, M. Ungarish, Kinetics of activated chemisorption. Part 2—Theoretical models. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 73, 456–464 (1977)

    Google Scholar 

  129. A. Bhattacharyya, et al., Design of an efficient and selective adsorbent of cationic dye through activated carbon–graphene oxide nanocomposite: study on mechanism and synergy. Mater. Chem. Phys. 260 (2021)

    Google Scholar 

  130. L. Abou Chacra et al., Application of graphene nanoplatelets and graphene magnetite for the removal of emulsified oil from produced water. J. Environ. Chem. Eng. 6(2), 3018–3033 (2018)

    Article  Google Scholar 

  131. H. Adamu, P. Dubey, J.A. Anderson, Probing the role of thermally reduced graphene oxide in enhancing performance of TiO2 in photocatalytic phenol removal from aqueous environments. Chem. Eng. J. 284, 380–388 (2016)

    Article  Google Scholar 

  132. M.T. Al-Shemy, A. Al-Sayed, S. Dacrory, Fabrication of sodium alginate/graphene oxide/nanocrystalline cellulose scaffold for methylene blue adsorption: kinetics and thermodynamics study. Sep. Purif. Technol. 290, 120825 (2022)

    Article  Google Scholar 

  133. T.S. Anirudhan, J.R. Deepa, Nano-zinc oxide incorporated graphene oxide/nanocellulose composite for the adsorption and photo catalytic degradation of ciprofloxacin hydrochloride from aqueous solutions. J. Colloid Interface Sci. 490, 343–356 (2017)

    Article  Google Scholar 

  134. N.I.F. Aris et al., Superhydrophilic graphene oxide/electrospun cellulose nanofibre for efficient adsorption of organophosphorus pesticides from environmental samples. R. Soc. Open Sci. 7(3), 192050 (2020)

    Article  Google Scholar 

  135. O. Bagoole et al., Functionalized three-dimensional graphene sponges for highly efficient crude and diesel oil adsorption. Environ. Sci. Pollut. Res. 25(23), 23091–23105 (2018)

    Article  Google Scholar 

  136. S. Bai et al., One-pot solvothermal preparation of magnetic reduced graphene oxide-ferrite hybrids for organic dye removal. Carbon 50(6), 2337–2346 (2012)

    Article  Google Scholar 

  137. U. Baig, M. Faizan, M. Sajid, Effective removal of hazardous pollutants from water and deactivation of water-borne pathogens using multifunctional synthetic adsorbent materials: a review. J. Clean. Prod. 126735 (2021)

    Google Scholar 

  138. A. Bhattacharyya et al., Development of an auto-phase separable and reusable graphene oxide-potato starch based cross-linked bio-composite adsorbent for removal of methylene blue dye. Int. J. Biol. Macromol. 116, 1037–1048 (2018)

    Article  Google Scholar 

  139. J. Chen et al., Direct reduction of graphene oxide/nanofibrillated cellulose composite film and its electrical conductivity research. Sci. Rep. 10(1), 3124 (2020)

    Article  MathSciNet  Google Scholar 

  140. L. Chen et al., Removal of methylene blue from water by cellulose/graphene oxide fibres. J. Exp. Nanosci. 11(14), 1156–1170 (2016)

    Article  Google Scholar 

  141. X. Chen, et al., Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution. Materials (Basel) 9(7) (2016)

    Google Scholar 

  142. Z. Dong et al., Bio-inspired surface-functionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with a superhigh capacity. J. Mater. Chem. A 2(14), 5034–5040 (2014)

    Article  Google Scholar 

  143. C. Gao et al., Preparation of reduced graphene oxide aerogel and its adsorption for Pb(II). ACS Omega 5(17), 9903–9911 (2020)

    Article  Google Scholar 

  144. H. Gu, et al., Nanocellulose nanocomposite aerogel towards efficient oil and organic solvent adsorption. Adv. Compos. Hybrid Mater. 1–10 (2021)

    Google Scholar 

  145. C.M.B. de Araujo et al., Wastewater treatment using recyclable agar-graphene oxide biocomposite hydrogel in batch and fixed-bed adsorption column: bench experiments and modeling for the selective removal of organics. Colloids Surf. A 639, 128357 (2022)

    Article  Google Scholar 

  146. A.A. Adeyi et al., Simultaneous adsorption of malachite green and methylene blue dyes in a fixed-bed column using poly (acrylonitrile-co-acrylic acid) modified with thiourea. Molecules 25(11), 2650 (2020)

    Article  Google Scholar 

  147. L. Chen et al., High performance agar/graphene oxide composite aerogel for methylene blue removal. Carbohyd. Polym. 155, 345–353 (2017)

    Article  Google Scholar 

  148. A. Zaman et al., Biopolymer-based nanocomposites for removal of hazardous dyes from water bodies, in Innovations in Environmental Biotechnology. (Springer, 2022), pp.759–783

    Chapter  Google Scholar 

  149. M. Adel et al., Removal of heavy metals and dyes from wastewater using graphene oxide-based nanomaterials: a critical review. Environ. Nanotechnol. Monitor. Manag. 18, 100719 (2022)

    Article  Google Scholar 

  150. Y. Yoon et al., Synthesis of magnetite/non-oxidative graphene composites and their application for arsenic removal. Sep. Purif. Technol. 178, 40–48 (2017)

    Article  Google Scholar 

  151. H. Zhang et al., Synthesis of KMnO4-treated magnetic graphene oxide nanocomposite (Fe3O4@ GO/MnOx) and its application for removing of Cu2+ ions from aqueous solution. Nanotechnology 29(13), 135706 (2018)

    Article  Google Scholar 

  152. C. Bulin et al., Magnetic graphene oxide nanocomposite: one-pot preparation, adsorption performance and mechanism for aqueous Mn (II) and Zn (II). J. Phys. Chem. Solids 156, 110130 (2021)

    Article  Google Scholar 

  153. A. Zaman et al., Facile one-pot in-situ synthesis of novel graphene oxide-cellulose nanocomposite for enhanced azo dye adsorption at optimized conditions. Carbohyd. Polym. 246, 116661 (2020)

    Article  Google Scholar 

  154. P. Banerjee et al., Application of graphene oxide nanoplatelets for adsorption of ibuprofen from aqueous solutions: evaluation of process kinetics and thermodynamics. Process Saf. Environ. Prot. 101, 45–53 (2016)

    Article  Google Scholar 

  155. P. Banerjee et al., Ultrasound assisted mixed azo dye adsorption by chitosan–graphene oxide nanocomposite. Chem. Eng. Res. Des. 117, 43–56 (2017)

    Article  Google Scholar 

  156. M. Adel, M.A. Ahmed, A.A. Mohamed, Effective removal of cationic dyes from aqueous solutions using reduced graphene oxide functionalized with manganese ferrite nanoparticles. Compos. Commun. 22, 100450 (2020)

    Article  Google Scholar 

  157. W. Xu et al., Novel ternary nanohybrids of tetraethylenepentamine and graphene oxide decorated with MnFe2O4 magnetic nanoparticles for the adsorption of Pb (II). J. Hazard. Mater. 358, 337–345 (2018)

    Article  Google Scholar 

  158. A. Pourjavadi, M. Nazari, S.H. Hosseini, Synthesis of magnetic graphene oxide-containing nanocomposite hydrogels for adsorption of crystal violet from aqueous solution. RSC Adv. 5(41), 32263–32271 (2015)

    Article  Google Scholar 

  159. L. Fan et al., Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. J. Hazard. Mater. 215, 272–279 (2012)

    Article  Google Scholar 

  160. S. Bhattacharya et al., Removal of aqueous carbamazepine using graphene oxide nanoplatelets: process modelling and optimization. Sustain. Environ. Res. 30(1), 1–12 (2020)

    MathSciNet  Google Scholar 

  161. R. Foroutan et al., Performance of montmorillonite/graphene oxide/CoFe2O4 as a magnetic and recyclable nanocomposite for cleaning methyl violet dye-laden wastewater. Adv. Powder Technol. 31(9), 3993–4004 (2020)

    Article  Google Scholar 

  162. M. Cao et al., Preparation of graphene oxide composite nitrogen-doped carbon (GO@NCs) by one-step carbonization with enhanced electrosorption performance for U(VI). J. Water Proc. Eng. 48, 102930 (2022)

    Article  Google Scholar 

  163. L.P. Lingamdinne et al., Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides. J. Hazard. Mater. 326, 145–156 (2017)

    Article  Google Scholar 

  164. K. Li et al., Design of MXene/graphene oxide nanocomposites with micro-wrinkle structure for efficient separating of uranium(VI) from wastewater. Chem. Eng. J. 433, 134449 (2022)

    Article  Google Scholar 

  165. L.P. Lingamdinne et al., Process optimization and adsorption modeling of Pb(II) on nickel ferrite-reduced graphene oxide nano-composite. J. Mol. Liq. 250, 202–211 (2018)

    Article  Google Scholar 

  166. S. Zhu et al., Adsorption of emerging contaminant metformin using graphene oxide. Chemosphere 179, 20–28 (2017)

    Article  Google Scholar 

  167. Y. Tang et al., Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics. Colloids Surf., A 424, 74–80 (2013)

    Article  Google Scholar 

  168. S. Anuma, P. Mishra, B.R. Bhat, Polypyrrole functionalized Cobalt oxide Graphene (COPYGO) nanocomposite for the efficient removal of dyes and heavy metal pollutants from aqueous effluents. J. Hazard. Mater. 416, 125929 (2021)

    Article  Google Scholar 

  169. M. Sivakumar et al., Porous graphene nanoplatelets encompassed with nitrogen and sulfur group for heavy metal ions removal of adsorption and desorption from single or mixed aqueous solution. Sep. Purif. Technol. 288, 120485 (2022)

    Article  Google Scholar 

  170. B. Du et al., Preparation of functionalized magnetic graphene oxide/lignin composite nanoparticles for adsorption of heavy metal ions and reuse as electromagnetic wave absorbers. Sep. Purif. Technol. 297, 121509 (2022)

    Article  Google Scholar 

  171. Z.U. Khan et al., Graphene oxide/PVC composite papers functionalized with p-Phenylenediamine as high-performance sorbent for the removal of heavy metal ions. J. Environ. Chem. Eng. 9(5), 105916 (2021)

    Article  Google Scholar 

  172. M. Verma et al., Synthesis of EDTA-functionalized graphene oxide-chitosan nanocomposite for simultaneous removal of inorganic and organic pollutants from complex wastewater. Chemosphere 287, 132385 (2022)

    Article  Google Scholar 

  173. X. Hao et al., Graphene oxide/montmorillonite composite aerogel with slit-shaped pores: Selective removal of Cu2+ from wastewater. J. Alloy. Compd. 923, 166335 (2022)

    Article  Google Scholar 

  174. Y.-H. Zhu et al., The synthesis of tannin-based graphene aerogel by hydrothermal treatment for removal of heavy metal ions. Ind. Crops Prod. 176, 114304 (2022)

    Article  Google Scholar 

  175. J. Yan, R. Li, Simple and low-cost production of magnetite/graphene nanocomposites for heavy metal ions adsorption. Sci. Total Environ. 813, 152604 (2022)

    Article  Google Scholar 

  176. J. Yan, K. Li, A magnetically recyclable polyampholyte hydrogel adsorbent functionalized with β-cyclodextrin and graphene oxide for cationic/anionic dyes and heavy metal ion wastewater remediation. Sep. Purif. Technol. 277, 119469 (2021)

    Article  Google Scholar 

  177. L.A. Al-Khateeb, S. Almotiry, M.A. Salam, Adsorption of pharmaceutical pollutants onto graphene nanoplatelets. Chem. Eng. J. 248, 191–199 (2014)

    Article  Google Scholar 

  178. S. Zhou et al., Montmorillonite-reduced graphene oxide composite aerogel (M−rGO): a green adsorbent for the dynamic removal of cadmium and methylene blue from wastewater. Sep. Purif. Technol. 296, 121416 (2022)

    Article  Google Scholar 

  179. X. Shi et al., Adsorption properties of graphene materials for pesticides: structure effect. J. Mol. Liq. 364, 119967 (2022)

    Article  Google Scholar 

  180. F.A. Rosli et al., Efficient removal of pharmaceuticals from water using graphene nanoplatelets as adsorbent. R. Soc. Open Sci. 8(1), 201076 (2021)

    Article  Google Scholar 

  181. E. Çalışkan Salihi et al., Graphene oxide as a new generation adsorbent for the removal of antibiotics from waters. Sep. Sci. Technol. 56(3), 453–461 (2021)

    Article  Google Scholar 

  182. Y. Gao et al., Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid Interface Sci. 368(1), 540–546 (2012)

    Article  Google Scholar 

  183. P. Joshi et al., Fruit waste-derived cellulose and graphene-based aerogels: plausible adsorption pathways for fast and efficient removal of organic dyes. J. Colloid Interface Sci. 608, 2870–2883 (2022)

    Article  Google Scholar 

  184. T. Liu et al., Adsorption-photocatalysis performance of polyaniline/dicarboxyl acid cellulose@graphene oxide for dye removal. Int. J. Biol. Macromol. 182, 492–501 (2021)

    Article  Google Scholar 

  185. Y. Qi et al., Natural polysaccharides-modified graphene oxide for adsorption of organic dyes from aqueous solutions. J. Colloid Interface Sci. 486, 84–96 (2017)

    Article  Google Scholar 

  186. P.M.M. da Silva et al., Instantaneous adsorption and synergic effect in simultaneous removal of complex dyes through nanocellulose/graphene oxide nanocomposites: batch, fixed-bed experiments and mechanism. Environ. Nanotechnol. Monit. Manag. 16, 100584 (2021)

    Google Scholar 

  187. D.R. Rout, H.M. Jena, Removal of malachite green dye from aqueous solution using reduced graphene oxide as an adsorbent. Mater. Today Proc. 47, 1173–1182 (2021)

    Article  Google Scholar 

  188. H. Du et al., Multifunctional magnetic bio-nanoporous carbon material based on zero-valent iron, Angelicae Dahuricae Radix slag and graphene oxide: an efficient adsorbent of pesticides. Arab. J. Chem. 14(8), 103267 (2021)

    Article  Google Scholar 

  189. A. Bibi et al., New material of polyacrylic acid-modified graphene oxide composite for phenol remediation from synthetic and real wastewater. Environ. Technol. Innov. 27, 102795 (2022)

    Article  Google Scholar 

  190. M.A. Al-Ghouti et al., Effective removal of phenol from wastewater using a hybrid process of graphene oxide adsorption and UV-irradiation. Environ. Technol. Innov. 27, 102525 (2022)

    Article  Google Scholar 

  191. H. Li et al., Reduced graphene oxide based aerogels: doped with ternary Prussian blue analogs and selective removal of Cs+ from effluent. J. Water Proc. Eng. 47, 102741 (2022)

    Article  Google Scholar 

  192. X. Liu, J. Wu, J. Wang, Removal of Cs (I) from simulated radioactive wastewater by three forward osmosis membranes. Chem. Eng. J. 344, 353–362 (2018)

    Article  Google Scholar 

  193. V. Chandra et al., Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4(7), 3979–3986 (2010)

    Article  Google Scholar 

  194. P. Sun et al., Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation−π interactions. ACS Nano 8(1), 850–859 (2014)

    Article  Google Scholar 

  195. M. Sharma et al., Selective removal of uranium from an aqueous solution of mixed radionuclides of uranium, cesium, and strontium via a viable recyclable GO@chitosan based magnetic nanocomposite. Mater. Today Commun. 32, 104020 (2022)

    Article  Google Scholar 

  196. S. Zhou et al., Amidoxime modified chitosan/graphene oxide composite for efficient adsorption of U(VI) from aqueous solutions. J. Environ. Chem. Eng. 9(6), 106363 (2021)

    Article  Google Scholar 

  197. X. Zhong et al., Ultra-high capacity of graphene oxide conjugated covalent organic framework nanohybrid for U(VI) and Eu(III) adsorption removal. J. Mol. Liq. 323, 114603 (2021)

    Article  Google Scholar 

  198. M. Su et al., Graphene oxide functionalized with nano hydroxyapatite for the efficient removal of U(VI) from aqueous solution. Environ. Pollut. 268, 115786 (2021)

    Article  Google Scholar 

  199. J.-B. Huo, G. Yu, J. Wang, Adsorptive removal of Sr(II) from aqueous solution by polyvinyl alcohol/graphene oxide aerogel. Chemosphere 278, 130492 (2021)

    Article  Google Scholar 

  200. C. Mu et al., Removal of bisphenol A over a separation free 3D Ag3PO4-graphene hydrogel via an adsorption-photocatalysis synergy. Appl. Catal. B 212, 41–49 (2017)

    Article  Google Scholar 

  201. W. Wang et al., Adsorption and competition investigation of phenolic compounds on the solid-liquid interface of three-dimensional foam-like graphene oxide. Chem. Eng. J. 378, 122085 (2019)

    Article  Google Scholar 

  202. T.R. Das et al., Bismuth oxide decorated graphene oxide nanocomposites synthesized via sonochemical assisted hydrothermal method for adsorption of cationic organic dyes. J. Colloid Interface Sci. 509, 82–93 (2018)

    Article  Google Scholar 

  203. M. Deng, Y. Huang, The phenomena and mechanism for the enhanced adsorption and photocatalytic decomposition of organic dyes with Ag3PO4/graphene oxide aerogel composites. Ceram. Int. 46(2), 2565–2570 (2020)

    Article  Google Scholar 

  204. N. Liu et al., Stabilized magnetic enzyme aggregates on graphene oxide for high performance phenol and bisphenol A removal. Chem. Eng. J. 306, 1026–1034 (2016)

    Article  Google Scholar 

  205. R. Hu et al., Efficient removal of phenol and aniline from aqueous solutions using graphene oxide/polypyrrole composites. J. Mol. Liq. 203, 80–89 (2015)

    Article  Google Scholar 

  206. E.R. Hugo et al., Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ. Health Perspect. 116(12), 1642–1647 (2008)

    Article  Google Scholar 

  207. F. Chen et al., Highly efficient removal of bisphenol A by a three-dimensional graphene hydrogel-AgBr@ rGO exhibiting adsorption/photocatalysis synergy. Appl. Catal. B 217, 65–80 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa, and DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa.

Author information

Authors and Affiliations

Authors

Contributions

The authors have no conflict of interest.

Corresponding author

Correspondence to Jonathan Tersur Orasugh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Temane, L., Orasugh, J.T., Ray, S.S. (2023). Adsorptive Removal of Pollutants Using Graphene-based Materials for Water Purification. In: Kumar, N., Gusain, R., Sinha Ray, S. (eds) Two-Dimensional Materials for Environmental Applications. Springer Series in Materials Science, vol 332. Springer, Cham. https://doi.org/10.1007/978-3-031-28756-5_7

Download citation

Publish with us

Policies and ethics