Skip to main content

Antibacterial Properties of Two-Dimensional Nanomaterials

  • Chapter
  • First Online:
Two-Dimensional Materials for Environmental Applications

Abstract

Many bacterial species have developed the ability to tolerate multiple drugs, and hence there is a severe threat in treating infectious diseases. Since the conventional drugs are becoming largely ineffective, there is an urgent need to find novel antibacterial strategies. To this end, the development of nanomaterials, mainly two-dimensional (2D) nanomaterials, has emerged as a new class of antimicrobial agents that demonstrate strong antimicrobial properties and are less susceptible to bacterial resistance. Various mechanisms associated with the antibacterial activity of 2D nanomaterials have been exhibited, including physical or mechanical damage, the release of controlled drug/metallic ions, multi-mode synergistic antibacterial activity, oxidative stress, and photothermal/photodynamic effects. In addition to the detailed mechanisms involved in antibacterial activities, this chapter discusses various types of 2D nanomaterials used for antibacterial activities. For better understanding, the 2D nanomaterials are classified into carbon and non-carbon based for antibacterial activities. The present challenges and possible future directions for the development of 2D nanomaterials with advanced antimicrobial properties are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.E. Baker, A.S. Mahmud, I.F. Miller, M. Rajeev, F. Rasambainarivo, B.L. Rice, S. Takahashi, A.J. Tatem, C.E. Wagner, L.-F. Wang, A. Wesolowski, C.J.E. Metcalf, Infectious disease in an era of global change. Nat. Rev. Microbiol. 20, 193–205 (2022)

    Article  Google Scholar 

  2. L. Giraud, A. Tourrette, E. Flahaut, Carbon nanomaterials-based polymer-matrix nanocomposites for antimicrobial applications: a review. Carbon 182, 463–483 (2021)

    Article  Google Scholar 

  3. M.I. Hutchings, A.W. Truman, B. Wilkinson, Antibiotics: past, present and future. Curr. Opin. Microbiol. 51, 72–80 (2019)

    Article  Google Scholar 

  4. M.E. Olson, H. Ceri, D.W. Morck, A.G. Buret, R.R. Read, Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can. J. Vet. Res. 66, 86–92 (2002)

    Google Scholar 

  5. V. Nizet, Stopping superbugs, maintaining the microbiota. Sci. Transl. Med. 7, 295ed8–295ed8 (2015)

    Google Scholar 

  6. C.L. Ventola, The antibiotic resistance crisis: part 1: causes and threats. P t 40, 277–283 (2015)

    Google Scholar 

  7. M.E. de Kraker, A.J. Stewardson, S. Harbarth, Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 13, e1002184 (2016)

    Article  Google Scholar 

  8. E. Sánchez-López, D. Gomes, G. Esteruelas, L. Bonilla, A.L. Lopez-Machado, R. Galindo, A. Cano, M. Espina, M. Ettcheto, A. Camins, A.M. Silva, A. Durazzo, A. Santini, M.L. Garcia, E.B. Souto, Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials (Basel) 10 (2020)

    Google Scholar 

  9. S. Sharmin, M.M. Rahaman, C. Sarkar, O. Atolani, M.T. Islam, O.S. Adeyemi, Nanoparticles as antimicrobial and antiviral agents: a literature-based perspective study. Heliyon 7, e06456 (2021)

    Article  Google Scholar 

  10. M.A. Gatoo, S. Naseem, M.Y. Arfat, A.M. Dar, K. Qasim, S. Zubair, Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed. Res. Int. 2014, 498420 (2014)

    Article  Google Scholar 

  11. B. Jia, X. Du, W. Wang, Y. Qu, X. Liu, M. Zhao, W. Li, Y.-Q. Li, Nanophysical antimicrobial strategies: a rational deployment of nanomaterials and physical stimulations in combating bacterial infections. Adv. Sci. 9, 2105252 (2022)

    Article  Google Scholar 

  12. L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed. 12, 1227–1249 (2017)

    Article  Google Scholar 

  13. T. Seifi, A.R. Kamali, Anti-pathogenic activity of graphene nanomaterials: a review. Colloids Surf., B 199, 111509 (2021)

    Article  Google Scholar 

  14. S. Begum, A. Pramanik, D. Davis, S. Patibandla, K. Gates, Y. Gao, P.C. Ray, 2D and heterostructure nanomaterial based strategies for combating drug-resistant bacteria. ACS Omega 5, 3116–3130 (2020)

    Article  Google Scholar 

  15. B. Anasori, Y. Gogotsi, Introduction to 2D Transition Metal Carbides and Nitrides (MXenes). 2D Metal Carbides and Nitrides (MXenes) (Springer, 2019)

    Google Scholar 

  16. M. Sathishkumar, S. Geethalakshmi, M. Saroja, M. Venkatachalam, P. Gowthaman, Chapter Three—Antimicrobial activities of biosynthesized nanomaterials, in Comprehensive Analytical Chemistry, ed. S.K. Verma, A.K. Das (Elsevier, 2021)

    Google Scholar 

  17. Q. Xin, H. Shah, A. Nawaz, W. Xie, M.Z. Akram, A. Batool, L. Tian, S.U. Jan, R. Boddula, B. Guo, Q. Liu, J.R. Gong, Antibacterial carbon-based nanomaterials. Adv. Mater. 31, 1804838 (2019)

    Article  Google Scholar 

  18. L. Mei, S. Zhu, W. Yin, C. Chen, G. Nie, Z. Gu, Y. Zhao, Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics 10, 757 (2020)

    Article  Google Scholar 

  19. Y. Li, X. Liu, L. Tan, Z. Cui, D. Jing, X. Yang, Y. Liang, Z. Li, S. Zhu, Y. Zheng, Eradicating multidrug-resistant bacteria rapidly using a multi functional g-C3N4@ Bi2S3 nanorod heterojunction with or without antibiotics. Adv. Func. Mater. 29, 1900946 (2019)

    Article  Google Scholar 

  20. Y. Wang, Y. Jin, W. Chen, J. Wang, H. Chen, L. Sun, X. Li, J. Ji, Q. Yu, L. Shen, Construction of nanomaterials with targeting phototherapy properties to inhibit resistant bacteria and biofilm infections. Chem. Eng. J. 358, 74–90 (2019)

    Article  Google Scholar 

  21. A. Gupta, S. Mumtaz, C.-H. Li, I. Hussain, V.M. Rotello, Combatting antibiotic-resistant bacteria using nanomaterials. Chem. Soc. Rev. 48, 415–427 (2019)

    Article  Google Scholar 

  22. X.-L. Hu, Y. Shang, K.-C. Yan, A.C. Sedgwick, H.-Q. Gan, G.-R. Chen, X.-P. He, T.D. James, D. Chen, Low-dimensional nanomaterials for antibacterial applications. J. Mater. Chem. B 9, 3640–3661 (2021)

    Article  Google Scholar 

  23. N. Beyth, Y. Houri-Haddad, A. Domb, W. Khan, R. Hazan, Alternative antimicrobial approach: nano-antimicrobial materials. Evid.-Based Complement. Alternat. Med. (2015)

    Google Scholar 

  24. L. Shi, J. Chen, L. Teng, L. Wang, G. Zhu, S. Liu, Z. Luo, X. Shi, Y. Wang, L. Ren, The antibacterial applications of graphene and its derivatives. Small 12, 4165–4184 (2016)

    Article  Google Scholar 

  25. L.-S. Wang, A. Gupta, V.M. Rotello, Nanomaterials for the treatment of bacterial biofilms. ACS Infect. Dis. 2, 3–4 (2016)

    Article  Google Scholar 

  26. Y. Wang, Y. Yang, Y. Shi, H. Song, C. Yu, Antibiotic-free antibacterial strategies enabled by nanomaterials: progress and perspectives. Adv. Mater. 32, 1904106 (2020)

    Article  Google Scholar 

  27. K. Lohner, New strategies for novel antibiotics: peptides targeting bacterial cell membranes. Gen. Physiol. Biophys. 28, 105–116 (2009)

    Article  Google Scholar 

  28. S. Akira, S. Uematsu, O. Takeuchi, Pathogen recognition and innate immunity. Cell 124, 783–801 (2006)

    Article  Google Scholar 

  29. E.P. Ivanova, J. Hasan, H.K. Webb, G. Gervinskas, S. Juodkazis, V.K. Truong, A.H. Wu, R.N. Lamb, V.A. Baulin, G.S. Watson, Bactericidal activity of black silicon. Nat. Commun. 4, 1–7 (2013)

    Article  Google Scholar 

  30. X. Lu, X. Feng, J.R. Werber, C. Chu, I. Zucker, J.-H. Kim, C.O. Osuji, M. Elimelech, Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc. Natl. Acad. Sci. 114, E9793–E9801 (2017)

    Article  Google Scholar 

  31. K. Krishnamoorthy, M. Veerapandian, K. Yun, S.J. Kim, New function of molybdenum trioxide nanoplates: toxicity towards pathogenic bacteria through membrane stress. Colloids Surf., B 112, 521–524 (2013)

    Article  Google Scholar 

  32. R. Kurapati, K. Kostarelos, M. Prato, A. Bianco, Biomedical uses for 2D materials beyond graphene: current advances and challenges ahead. Adv. Mater. 28, 6052–6074 (2016)

    Article  Google Scholar 

  33. P. Singh, P. Shandilya, P. Raizada, A. Sudhaik, A. Rahmani-Sani, A. Hosseini-Bandegharaei, Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification. Arab. J. Chem. 13, 3498–3520 (2020)

    Article  Google Scholar 

  34. J.A. Lemire, J.J. Harrison, R.J. Turner, Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11, 371–384 (2013)

    Article  Google Scholar 

  35. M.Y. Memar, R. Ghotaslou, M. Samiei, K. Adibkia, Antimicrobial use of reactive oxygen therapy: current insights. Infect. Drug Resist. 11, 567 (2018)

    Article  Google Scholar 

  36. Z. Shaw, S. Kuriakose, S. Cheeseman, M.D. Dickey, J. Genzer, A.J. Christofferson, R.J. Crawford, C.F. McConville, J. Chapman, V.K. Truong, Antipathogenic properties and applications of low-dimensional materials. Nat. Commun. 12, 1–19 (2021)

    Article  Google Scholar 

  37. J. Chen, X. Wang, H. Han, A new function of graphene oxide emerges: inactivating phytopathogenic bacterium Xanthomonas oryzae pv. Oryzae. J. Nanoparticle Res. 15, 1–14 (2013)

    Google Scholar 

  38. S. Gurunathan, J.W. Han, A.A. Dayem, V. Eppakayala, J.-H. Kim, Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomed. 7, 5901 (2012)

    Article  Google Scholar 

  39. F. Perreault, A.F. De Faria, S. Nejati, M. Elimelech, Antimicrobial properties of graphene oxide nanosheets: why size matters. ACS Nano 9, 7226–7236 (2015)

    Article  Google Scholar 

  40. D.K. Ji, Y. Zhang, Y. Zang, J. Li, G.R. Chen, X.P. He, H. Tian, Targeted intracellular production of reactive oxygen species by a 2D molybdenum disulfide glycosheet. Adv. Mater. 28, 9356–9363 (2016)

    Article  Google Scholar 

  41. G.S. Bang, S. Cho, N. Son, G.W. Shim, B.-K. Cho, S.-Y. Choi, DNA-assisted exfoliation of tungsten dichalcogenides and their antibacterial effect. ACS Appl. Mater. Interf. 8, 1943–1950 (2016)

    Article  Google Scholar 

  42. Z. Yuan, B. Tao, Y. He, J. Liu, C. Lin, X. Shen, Y. Ding, Y. Yu, C. Mu, P. Liu, Biocompatible MoS2/PDA-RGD coating on titanium implant with antibacterial property via intrinsic ROS-independent oxidative stress and NIR irradiation. Biomaterials 217, 119290 (2019)

    Article  Google Scholar 

  43. S. Pandit, S. Karunakaran, S.K. Boda, B. Basu, M. De, High antibacterial activity of functionalized chemically exfoliated MoS2. ACS Appl. Mater. Interf. 8, 31567–31573 (2016)

    Article  Google Scholar 

  44. D. Jaque, L. Martínez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J.L. Plaza, E. Martín Rodríguez, J. García Solém, Nanoparticles for photothermal therapies. Nanoscale 6, 9494–9530 (2014)

    Google Scholar 

  45. W.-Y. Pan, C.-C. Huang, T.-T. Lin, H.-Y. Hu, W.-C. Lin, M.-J. Li, H.-W. Sung, Synergistic antibacterial effects of localized heat and oxidative stress caused by hydroxyl radicals mediated by graphene/iron oxide-based nanocomposites. Nanomed.: Nanotech. Biol. Med. 12, 431–438 (2016)

    Article  Google Scholar 

  46. Y. Liu, X. Zeng, X. Hu, J. Hu, X. Zhang, Two-dimensional nanomaterials for photocatalytic water disinfection: recent progress and future challenges. J. Chem. Technol. Biotechnol. 94, 22–37 (2019)

    Article  Google Scholar 

  47. C. Liu, D. Kong, P.-C. Hsu, H. Yuan, H.-W. Lee, Y. Liu, H. Wang, S. Wang, K. Yan, D. Lin, Rapid water disinfection using vertically aligned MoS 2 nanofilms and visible light. Nat. Nanotechnol. 11, 1098–1104 (2016)

    Article  Google Scholar 

  48. L. Sun, T. Du, C. Hu, J. Chen, J. Lu, Z. Lu, H. Han, Antibacterial activity of graphene oxide/g-C3N4 composite through photocatalytic disinfection under visible light. ACS Sustain. Chem. Eng. 5, 8693–8701 (2017)

    Article  Google Scholar 

  49. D. Wu, B. Wang, W. Wang, T. An, G. Li, T.W. Ng, H.Y. Yip, C. Xiong, H.K. Lee, P.K. Wong, Visible-light-driven BiOBr nanosheets for highly facet-dependent photocatalytic inactivation of Escherichia coli. J. Mater. Chem. A 3, 15148–15155 (2015)

    Article  Google Scholar 

  50. Z. Xu, Y. Gao, S. Meng, B. Yang, L. Pang, C. Wang, T. Liu, Mechanism and in vivo evaluation: photodynamic antibacterial chemotherapy of lysine-porphyrin conjugate. Front. Microbiol. 7, 242 (2016)

    Article  Google Scholar 

  51. B.Z. Ristic, M.M. Milenkovic, I.R. Dakic, B.M. Todorovic-Markovic, M.S. Milosavljevic, M.D. Budimir, V.G. Paunovic, M.D. Dramicanin, Z.M. Markovic, V.S. Trajkovic, Photodynamic antibacterial effect of graphene quantum dots. Biomaterials 35, 4428–4435 (2014)

    Article  Google Scholar 

  52. W. Liu, Y. Feng, H. Tang, H. Yuan, S. He, S. Miao, Immobilization of silver nanocrystals on carbon nanotubes using ultra-thin molybdenum sulfide sacrificial layers for antibacterial photocatalysis in visible light. Carbon 96, 303–310 (2016)

    Article  Google Scholar 

  53. Z. Feng, X. Liu, L. Tan, Z. Cui, X. Yang, Z. Li, Y. Zheng, K.W.K. Yeung, S. Wu, Electrophoretic deposited stable chitosan@ MoS2 coating with rapid in situ bacteria-killing ability under dual-light irradiation. Small 14, 1704347 (2018)

    Article  Google Scholar 

  54. Y. Li, X. Liu, L. Tan, Z. Cui, X. Yang, Y. Zheng, K.W.K. Yeung, P.K. Chu, S. Wu, Rapid sterilization and accelerated wound healing using Zn2+ and graphene oxide modified g-C3N4 under dual light irradiation. Adv. Func. Mater. 28, 1800299 (2018)

    Article  Google Scholar 

  55. X. Zhang, C. Zhang, Y. Yang, X. Huang, R. Hang, X. Yao, Light-assisted rapid sterilization by a hydrogel incorporated with Ag3PO4/MoS2 composites for efficient wound disinfection. Chem. Eng. J. 374, 596–604 (2019)

    Article  Google Scholar 

  56. Y. Lin, D. Han, Y. Li, L. Tan, X. Liu, Z. Cui, X. Yang, Z. Li, Y. Liang, S. Zhu, Ag2S@ WS2 heterostructure for rapid bacteria-killing using near-infrared light. ACS Sustain. Chem. Eng. 7, 14982–14990 (2019)

    Article  Google Scholar 

  57. B. Li, L. Tan, X. Liu, Z. Li, Z. Cui, Y. Liang, S. Zhu, X. Yang, K.W.K. Yeung, S. Wu, Superimposed surface plasma resonance effect enhanced the near-infrared photocatalytic activity of Au@ Bi2WO6 coating for rapid bacterial killing. J. Hazard. Mater. 380, 120818 (2019)

    Article  Google Scholar 

  58. W. Yin, J. Yu, F. Lv, L. Yan, L.R. Zheng, Z. Gu, Y. Zhao, Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 10, 11000–11011 (2016)

    Article  Google Scholar 

  59. C. Zhang, D.-F. Hu, J.-W. Xu, M.-Q. Ma, H. Xing, K. Yao, J. Ji, Z.-K. Xu, Polyphenol-assisted exfoliation of transition metal dichalcogenides into nanosheets as photothermal nanocarriers for enhanced antibiofilm activity. ACS Nano 12, 12347–12356 (2018)

    Article  Google Scholar 

  60. M. Li, L. Li, K. Su, X. Liu, T. Zhang, Y. Liang, D. Jing, X. Yang, D. Zheng, Z. Cui, Highly effective and noninvasive near-infrared eradication of a Staphylococcus aureus biofilm on implants by a photoresponsive coating within 20 min. Adv. Sci. 6, 1900599 (2019)

    Article  Google Scholar 

  61. A.M. Jastrzębska, E. Karwowska, T. Wojciechowski, W. Ziemkowska, A. Rozmysłowska, L. Chlubny, A. Olszyna, The atomic structure of Ti2C and Ti3C2 MXenes is responsible for their antibacterial activity toward E. coli bacteria. J. Mater. Eng. Perform. 28, 1272–1277 (2019)

    Article  Google Scholar 

  62. B. Li, Y. Luo, Y. Zheng, X. Liu, L. Tan, S. Wu, Two-dimensional antibacterial materials. Progr. Mater. Sci. 100976 (2019)

    Google Scholar 

  63. L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227 (2017)

    Article  Google Scholar 

  64. K. Rasool, R.P. Pandey, P.A. Rasheed, S. Buczek, Y. Gogotsi, K.A. Mahmoud, Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes). Mater. Today 30, 80–102 (2019)

    Article  Google Scholar 

  65. P. Kumar, P. Huo, R. Zhang, B. Liu, Antibacterial properties of graphene-based nanomaterials. Nanomaterials 9, 737 (2019)

    Google Scholar 

  66. N. Dwivedi, C. Dhand, P. Kumar, A. Srivastava, Emergent 2D materials for combating infectious diseases: the potential of MXenes and MXene–graphene composites to fight against pandemics. Mater. Adv. 2, 2892–2905 (2021)

    Article  Google Scholar 

  67. S. Yaragalla, K.B. Bhavitha, A. Athanassiou, A review on graphene based materials and their antimicrobial properties. Coatings 11, 1197 (2021)

    Article  Google Scholar 

  68. W.-C. Hou, P.-L. Lee, Y.-C. Chou, Y.-S. Wang, Antibacterial property of graphene oxide: the role of phototransformation. Environ. Sci. Nano 4, 647–657 (2017)

    Article  Google Scholar 

  69. K. Rasool, K.A. Mahmoud, D.J. Johnson, M. Helal, G.R. Berdiyorov, Y. Gogotsi, Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci. Rep. 7, 1598 (2017)

    Article  Google Scholar 

  70. M.L. Cohen, Structural, electronic and optical properties of carbon nitride. Mater. Sci. Eng., A 209, 1–4 (1996)

    Article  Google Scholar 

  71. J. Zhu, P. Xiao, H. Li, S.A. Carabineiro, Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces. 6, 16449–16465 (2014)

    Article  Google Scholar 

  72. L. Maya, D.R. Cole, E.W. Hagaman, Carbon–nitrogen pyrolyzates: attempted preparation of carbon nitride. J. Am. Ceram. Soc. 74, 1686–1688 (1991)

    Article  Google Scholar 

  73. D.C. Nesting, J.V. Badding, High-pressure synthesis of sp2-bonded carbon nitrides. Chem. Mater. 8, 1535–1539 (1996)

    Article  Google Scholar 

  74. S. Kang, Y. Fang, Y. Huang, L.-F. Cui, Y. Wang, H. Qin, Y. Zhang, X. Li, Y. Wang, Critical influence of g-C3N4 self-assembly coating on the photocatalytic activity and stability of Ag/AgCl microspheres under visible light. Appl. Catal. B 168, 472–482 (2015)

    Article  Google Scholar 

  75. S. Patnaik, D.P. Sahoo, K. Parida, An overview on Ag modified g-C3N4 based nanostructured materials for energy and environmental applications. Renew. Sustain. Energy Rev. 82, 1297–1312 (2018)

    Article  Google Scholar 

  76. S. Ma, S. Zhan, Y. Jia, Q. Zhou, Superior antibacterial activity of Fe3O4-TiO2 nanosheets under solar light. ACS Appl. Mater. Interf. 7, 21875–21883 (2015)

    Article  Google Scholar 

  77. K. Yan, C. Mu, L. Meng, Z. Fei, P.J. Dyson, Recent advances in graphite carbon nitride-based nanocomposites: structure, antibacterial properties and synergies. Nanoscale Adv. 3, 3708–3729 (2021)

    Article  Google Scholar 

  78. J. Dai, J. Song, Y. Qiu, J. Wei, Z. Hong, L. Li, H. Yang, Gold nanoparticle-decorated g-C3N4 nanosheets for controlled generation of reactive oxygen species upon 670 nm laser illumination. ACS Appl. Mater. Interf. 11, 10589–10596 (2019)

    Article  Google Scholar 

  79. M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014)

    Article  Google Scholar 

  80. A. Shahzad, M. Nawaz, M. Moztahida, J. Jang, K. Tahir, J. Kim, Y. Lim, V.S. Vassiliadis, S.H. Woo, D.S. Lee, Ti3C2Tx MXene core-shell spheres for ultrahigh removal of mercuric ions. Chem. Eng. J. 368, 400–408 (2019)

    Article  Google Scholar 

  81. A. Shahzad, K. Rasool, M. Nawaz, W. Miran, J. Jang, M. Moztahida, K.A. Mahmoud, D.S. Lee, Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine. Chem. Eng. J. 349, 748–755 (2018)

    Article  Google Scholar 

  82. X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horizons 5, 235–258 (2020)

    Article  Google Scholar 

  83. K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi, K.A. Mahmoud, Antibacterial activity of Ti3C2T x MXene. ACS Nano 10, 3674–3684 (2016)

    Article  Google Scholar 

  84. A. Arabi Shamsabadi, G.M. Sharifian, B. Anasori, M. Soroush, Antimicrobial mode-of-action of colloidal Ti3C2Tx MXene nanosheets. ACS Sustain. Chem. Eng. 6, 16586–16596

    Google Scholar 

  85. G.P. Lim, C.F. Soon, M. Morsin, M.K. Ahmad, N. Nayan, K.S. Tee, Synthesis, characterization and antifungal property of Ti3C2Tx MXene nanosheets. Ceram. Int. 46, 20306–20312 (2020)

    Article  Google Scholar 

  86. R. Pandey, K. Rasool, E.M. Vinod, B. Aïssa, Y. Gogotsi, K. Mahmoud, Ultrahigh-flux and fouling-resistant membrane based on layered silver/MXene(Ti3C2Tx) nanosheets. J. Mater. Chem. A 6 (2018)

    Google Scholar 

  87. H. Moon, J. Bang, S. Hong, G. Kim, J.W. Roh, J. Kim, W. Lee, Strong thermopower enhancement and tunable power factor via semimetal to semiconductor transition in a transition-metal dichalcogenide. ACS Nano 13, 13317–13324 (2019)

    Article  Google Scholar 

  88. X.Y. Wong, A. Sena-Torralba, R. Alvarez-Diduk, K. Muthoosamy, A. Merkoci, Nanomaterials for nanotheranostics: tuning their properties according to disease needs. ACS Nano 14, 2585–2627 (2020)

    Article  Google Scholar 

  89. S. Begum, A. Pramanik, K. Gates, Y. Gao, P.C. Ray, Antimicrobial peptide-conjugated MoS2-based nanoplatform for multimodal synergistic inactivation of superbugs. ACS Appl. Bio Mater. 2, 769–776 (2019)

    Article  Google Scholar 

  90. F. Cao, E. Ju, Y. Zhang, Z. Wang, C. Liu, W. Li, Y. Huang, K. Dong, J. Ren, X. Qu, An efficient and benign antimicrobial depot based on silver-infused MoS2. ACS Nano 11, 4651–4659 (2017)

    Article  Google Scholar 

  91. Y. Feng, Q. Chen, Q. Yin, G. Pan, Z. Tu, L. Liu, Reduced graphene oxide functionalized with gold nanostar nanocomposites for synergistically killing bacteria through intrinsic antimicrobial activity and photothermal ablation. ACS Appl. Bio Mater. 2, 747–756 (2019)

    Article  Google Scholar 

  92. S. Karunakaran, S. Pandit, B. Basu, M. De, Simultaneous exfoliation and functionalization of 2H-MoS2 by thiolated surfactants: applications in enhanced antibacterial activity. J. Am. Chem. Soc. 140, 12634–12644 (2018)

    Article  Google Scholar 

  93. S. Roy, A. Mondal, V. Yadav, A. Sarkar, R. Banerjee, P. Sanpui, A. Jaiswal, Mechanistic insight into the antibacterial activity of chitosan exfoliated MoS2 nanosheets: membrane damage, metabolic inactivation and oxidative stress. ACS Appl. Bio Mater. 2, 2738–2755 (2019)

    Article  Google Scholar 

  94. H. Zhao, C. Zhang, Y. Wang, W. Chen, P.J.J. Alvarez, Self-damaging aerobic reduction of graphene oxide by Escherichia coli: role of GO-mediated extracellular superoxide formation. Environ. Sci. Technol. 52, 12783–12791 (2018)

    Article  Google Scholar 

  95. X. Yang, J. Li, T. Liang, C. Ma, Y. Zhang, H. Chen, N. Hanagata, H. Su, M. Xu, Antibacterial activity of two-dimensional MoS2 sheets. Nanoscale 6, 10126–10133 (2014)

    Article  Google Scholar 

  96. W. Zhang, Z. Mou, Y. Wang, Y. Chen, E. Yang, F. Guo, D. Sun, W. Wang, Molybdenum disulfide nanosheets loaded with Chitosan and silver nanoparticles effective antifungal activities: in vitro and in vivo. Mater Sci Eng C Mater Biol Appl 97, 486–497 (2019)

    Article  Google Scholar 

  97. Z. Miao, L. Fan, X. Xie, Y. Ma, J. Xue, T. He, Z. Zha, Liquid exfoliation of atomically thin antimony selenide as an efficient two-dimensional antibacterial nanoagent. ACS Appl. Mater. Interf. 11, 26664–26673 (2019)

    Article  Google Scholar 

  98. B. Wang, M.K.H. Leung, X.-Y. Lu, S.-Y. Chen, Synthesis and photocatalytic activity of boron and fluorine codoped TiO2 nanosheets with reactive facets. Appl. Energy 112, 1190–1197 (2013)

    Article  Google Scholar 

  99. A. Pal, T.K. Jana, T. Roy, A. Pradhan, R. Maiti, S.M. Choudhury, K. Chatterjee, MoS2-TiO2 nanocomposite with excellent adsorption performance and high antibacterial activity. ChemistrySelect 3, 81–90 (2018)

    Article  Google Scholar 

  100. Z. Li, L. Wu, H. Wang, W. Zhou, H. Liu, H. Cui, P. Li, P.K. Chu, X.-F. Yu, Synergistic antibacterial activity of black phosphorus nanosheets modified with titanium aminobenzenesulfanato complexes. ACS Appl. Nano Mater. 2, 1202–1209 (2019)

    Article  Google Scholar 

  101. K. Rasool, K.A. Mahmoud, D.J. Johnson, M. Helal, G.R. Berdiyorov, Y. Gogotsi, Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci. Rep. 7, 1–11 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledges School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology, Sector H-12, Islamabad, Pakistan for their support.

Funding

Funding Information

This work received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waheed Miran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Noor, E. et al. (2023). Antibacterial Properties of Two-Dimensional Nanomaterials. In: Kumar, N., Gusain, R., Sinha Ray, S. (eds) Two-Dimensional Materials for Environmental Applications. Springer Series in Materials Science, vol 332. Springer, Cham. https://doi.org/10.1007/978-3-031-28756-5_5

Download citation

Publish with us

Policies and ethics