Skip to main content

Soil Fertility Recovery at the Kara River Basin (Togo, West Africa): Local Solutions at the Interface of Climate and Land Use Change

  • Chapter
  • First Online:
Climate Change Strategies: Handling the Challenges of Adapting to a Changing Climate

Abstract

Degrading soils reduce the tolerance to a variable and changing climate; managing soil fertility is key to climate change adaptation. Rural communities of the Kara River Basin in Togo see soil and climate issues as closely linked. To identify local solutions to adapt to climate and land-use-change-induced soil fertility decline, this study employed semi-structured questionnaire interviews with 436 respondents (farming households) from 38 selected villages in the river basin, focus group discussions, and key informant interviews coupled with transect-walks in the landscape. Data were analysed using descriptive statistics through IBM IPSS version 25 and MS EXCEL 2016, and triangulation methods to verify results. The local solutions farmers mentioned beyond chemical fertilizers, were dominated by natural solutions such as: fallowing (53%), mixed farming (50%), composting (45%), contour cropping (43%), mulching (28%), agroforestry (8%), and (other) biological fertilizers (7%). All these solutions were rated 8.5 and 9 on a scale of 10 by farmers in terms of performance in improving soil fertility and increasing yields, respectively. The study concluded that local nature-based solutions as such are preferred by farmers and present huge potential to combat the soil fertility loss in existing land use in the basin that is aggravated by climate change. Such solutions should be prioritized for testing if rural households are to increase resilience vis-a-vis global environmental changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adji KM, Egbendewe AYG, Lokonon BOK (2021) Potential impacts of sustainable agricultural practices on smallholders’ behavior in developing countries: Evidence from Togo. Nat Res Forum 1–15:77. https://doi.org/10.1111/1477-8947.12243

    Article  Google Scholar 

  • Badjana HM (2015) River basins assessment and hydrologic processes modeling for integrated land and water resources management (ILWRM) in West Africa. Doctoral thesis

    Google Scholar 

  • Badjana HM, Batawila K, Wala K, Akpagana K (2011) Evolution Des Paramètres Climatiques Dans La Plaine De L’oti (Nord-Togo): Analyse Statistique. Perceptions Locales Et Mesures Endogènes D’adaptation 15(2):77–95

    Google Scholar 

  • Badjana HM, Helmschrot J, Selsam P, Wala K, Flügel WA, Afouda A, Akpagana K (2016) Land cover changes assessment using object-based image analysis in the Binah River watershed (Togo and Benin). Earth and Space Science 3:46–67. https://doi.org/10.1002/2014EA000083

    Article  Google Scholar 

  • Badjana HM, Renard B, Helmschrot J, Edjamé KS, Afouda A, Wala K (2017a) Bayesian trend analysis in annual rainfall total, duration and maximum in the Kara River basin (West Africa). J Hydrol Region Stud 13:255–273. https://doi.org/10.1016/j.ejrh.2017.08.009

  • Badjana HM, Olofsson P, Woodcock CE, Helmschrot J, Wala K, Akpagana K (2017b) Mapping and estimating land change between 2001 and 2013 in a heterogeneous landscape in West Africa: Loss of forestlands and capacity building opportunities. Int J Appl Earth Obs Geoinf 63:15–23

    Google Scholar 

  • Bai ZG, Dent DL, Olsson L, Schaepman ME (2008) Proxy global assessment of land degradation. Soil Use Manag 24:223–234

    Google Scholar 

  • Barbier EB, Hochard JP (2016) Does land degradation increase poverty in developing countries? PLoS ONE 11(5):13–15. https://doi.org/10.1371/journal.pone.0152973

    Article  CAS  Google Scholar 

  • Berrang-Ford L (2019) Tracking global climate change adaptation among governments. Nat Clim Chang 9(6):440–449. https://doi.org/10.1038/s41558-019-0490-0

    Article  Google Scholar 

  • Brabant P, Darracq S, Égué K, Simonneaux V (1996) Togo: état de dégradation des terres résultant des activités humaines, carte des indices de dégradation, Paris: Éd. de l’ORSTOM, ISBN 2709913488 9782709913485

    Google Scholar 

  • Carpenter SR, Mooney HA, Agard J, Capistrano D, DeFries RS, Díaz S, Dietz T, Duraiappah AK, Oteng-Yeboah A, Pereira HM (2009) Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. Proc Natl Acad Sci 106:1305–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cradock-Henry NAF, Buelow S, Flood P, Blackett A, Wreford (2019) Towards a heuristic for assessing adaptation knowledge: impacts, implications, decisions and actions. Environ Res Lett 14. https://doi.org/10.1088/1748-9326/ab370c

  • Craft B, Fisher S (2018) Measuring the adaptation goal in the global stocktake of the Paris agreement. Climate Policy 18(9):1203–1209. https://doi.org/10.1080/14693062.2018.1485546

    Article  Google Scholar 

  • Critchley WRS, Reij CP, Turner SD (1992) Soil and Water Conservation in Sub-Saharan Africa: towards Sustainable Production by the rural poor. https://doi.org/10.1016/0143-6228(92)90018-i

  • de Jong R, de Bruin S, Schaepman M, Dent D (2011) Quantitative mapping of global land degradation using Earth observations. Int J Remote Sens 32(6823–6853):13

    Google Scholar 

  • Depenbusch L, Klasen S (2019) The effect of bigger human bodies on the future global calorie requirements. PLoS ONE 14:1–15. https://doi.org/10.1371/journal.pone.0223188

    Article  CAS  Google Scholar 

  • Dilling L, Prakash A, Ahmad ZZ, Singh N, de Wit S, Nalau J, Daly M, Bowmman K, (2019) Is adaptation success a flawed concept? Nat Clim Chang 9:572–574. https://doi.org/10.1038/s41558-019-0539-0

  • Djagni KK (2003) L’agriculture togolaise face à des mutations environnementales multiples, Nécessité d’un ensemble d’innovations techniques et organisationnelles cohérentes. In: Jamin JY et al. (eds) Prasac, Savanes africaines : des espaces en mutation, des acteurs face à de nouveaux défis. N’Djamena, Tchad, Cirad, Montpellier, France

    Google Scholar 

  • Duncan JMA, Haworth B, Boruff B, Wales N, Biggs EM, Bruce E (2020) Managing multifunctional landscapes: Local insights from a Pacific Island Country context. J Environ Manage 260:109692. https://doi.org/10.1016/j.jenvman.2019.109692

  • Eriksen S, Aldunce P, Bahinipati CS, Martins RDA, Molefe JI, Nhemachena C, O’Brien K, Olorunfemi F, Park J, Sygna K, Ulsrud K (2011) When not every response to climate change is a good one: Identifying principles for sustainable adaptation. Climate Dev 3(1):7–20. https://doi.org/10.3763/cdev.2010.0060

    Article  Google Scholar 

  • Foley JA, De Fries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK (2005) Global consequences of land use. Science 309:570–574. https://doi.org/10.1126/science.1111772

    Article  CAS  Google Scholar 

  • Ford JD, Berrang-Ford L, Lesnikowski A, Barrera M, Heymann SJ (2013) How to track adaptation to climate change: A typology of approaches for national-level application. Ecol Soc 18(4):art40. https://doi.org/10.5751/ES-05732-180340

  • GCEC (2014) Better growth, better climate: The new climate economy report. The Global Commission of the Economy and Climate, New Climate Economy, Washington, DC, USA

    Google Scholar 

  • Gerber N, Nkonya E, von Braun J (2014) Land degradation, poverty and marginality. In: von Braun J, Gatzweiler FW (eds) Marginality: addressing the nexus of poverty, exclusion and ecology. Springer, Berlin, pp 181–202

    Chapter  Google Scholar 

  • GFDRR (2018) Enhancing disaster preparedness in togo. https://doi.org/10.1016/c2018-0-02311-7

  • Hardicre J (2014) Valid informed consent in research: an introduction. Br J Nursing 4(4):17–18

    Google Scholar 

  • Harvey CA, Chacon M, Donatti CI, Garen E, Hannah L, Andrade A, Bede L, Brown D, Calle A, Chara J (2014) Climate-smart landscapes: opportunities and challenges for integrating adaptation and mitigation In tropical agriculture. Conserv Lett 7:77–90

    Article  Google Scholar 

  • Hay SI, Simba M, Busolo M, Noor AM, Guyatt HL, Ochola SA, Snow RW (2002) Climate change and the resurgence of malaria in the East African highlands. Nature 415:905–909. https://doi.org/10.1038/415905a

  • Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) (2018) Land degradation and restoration: Companion to environmental studies. https://doi.org/10.4324/9781315640051-105

  • Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (2019) The global assessment report on of the IPBES global asessment report on biodiversity and ecosystem services: summury on policymakers. https://ipbes.net/system/tdf/ipbes_global_assessment_report_summary_for_policymakers.pdf?file=1&type=node&id=35329

  • Isaac D (2015) Soil and water conservation technologies in the West African Sudan Savanna: cropping system options to address variability of crop yield and impacts of climate change. http://hss.ulb.uni-bonn.de/2015/4221/4221.pdf

  • Jiang L, Hardee K (2011) How do recent population trends matter to climate change? Popul Res Policy Rev 30:287–312

    Article  Google Scholar 

  • Lal R (2004) Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 304(5677):1623–1627. https://doi.org/10.1126/science.1097396

    Article  CAS  PubMed  Google Scholar 

  • Lambin EF, Meyfroidt P (2011) Global land use change, economic globalization, and the looming land scarcity. Proc Natl Acad Sci 108:3465–3472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MAEP (2013) Aperçu de l’agriculture togolaise.

    Google Scholar 

  • Maitima J, Reid RS, Gachimbi LN, Majule A, Lyaruu H, Pomery D, Mugatha S, Mathai S, Mugisha S (2004) Regional synthesis paper: the linkages between land use change, land degradation and biodiversity across East Africa. LUCID Working Paper 42:1–51

    Google Scholar 

  • Maja MM, Ayano SF (2021) The impact of population growth on natural resources and farmers’ capacity to adapt to climate change in low-income countries. Earth Syst Environ 5(2):271–283. https://doi.org/10.1007/s41748-021-00209-6

    Article  Google Scholar 

  • Malmborg K, Sinare H, Kautsky EE, Ouedraogo I, Gordon J (2018) Mapping regional livelihood benefits from local ecosystem services assessments in rural Sahel, pp 1–20.

    Google Scholar 

  • Ministere de l’Environnement et des Ressources Forestieres du Togo (MERF) (2009) Plan d’Action National d’Adaptation aux changements climatiques—PANA-Togo

    Google Scholar 

  • Minang PA, van Noordwijk, M, Freeman OE, Mbow C, de Leeuw J, Catacutan D (eds) (2015) Climate-smart landscapes: multifunctionality in practice. World Agroforestry Centre (ICRAF), Nairobi (Kenya)

    Google Scholar 

  • Molotoks A, Stehfest E, Doelman J, Albanito F, Fitton N, Dawson TP, Smith P (2018) Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. Glob Change Biol 24:5895–5908

    Google Scholar 

  • Morgan EA, Nalau J, Mackey B (2019) Assessing the alignment of national-level adaptation plans to the Paris agreement. Environ Sci Policy 93:208–220. https://doi.org/10.1016/j.envsci.2018.10.012

    Article  Google Scholar 

  • Mwongera C, Shikuku KM, Twyman J, L€ aderach P, Ampaire E, Van Asten P, Twomlo, S, Winowiecki LA, (2017) Climate smart agriculture rapid appraisal (CSA-RA): a tool for prioritizing context-specific climate smart agriculture technologies. Agric Syst 151:192–203

    Google Scholar 

  • Nachtergaele F, Petri M, Biancalani R, Van Lynden G, Van Velthuizen H, Bloise M et al. (2010) Global land degradation information system (GLADIS). Version 1.0. An information database for land degradation assessment at global level (Land Degradation Assessment in Drylands Technical Report No. 17). FAO, Rome, Italy

    Google Scholar 

  • Nalau J, Preston BL, Maloney MC (2015) Is adaptation a local responsibility? Environ Sci Policy 48:89–98. https://doi.org/10.1016/j.envsci.2014.12.011

    Article  Google Scholar 

  • Nkonya E, Gerber N, Baumgartner P, von Braun J, De Pinto A, Graw E, et al (2011) The economics of desertification, land degradation, and drought (IFPRI Discussion Paper 01086) International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Paaijmans KP, Imbahale SS, Thomas MB, Takken W (2010) Relevant microclimate for determining the development rate of malaria mosquitoes and possible implications of climate change. Malar J 9(1):1–8. https://doi.org/10.1186/1475-2875-9-196

    Article  Google Scholar 

  • Parahoo K (2006) Nursing Research: Principles, Process and Issues, 2nd edn. Palgrave Macmillan, Basingstoke

    Google Scholar 

  • Parsons M, Fisher K, Nalau J (2016) Alternative approaches to co-design: insights from indigenous/academic research collaborations. Curr Opin Environ Sustain 20:99–105

    Google Scholar 

  • Potschin M, Haines-Young R (2013) Landscapes, sustainability and the place-based analysis of ecosystem services. Landsc Ecol 28:1053–1065

    Google Scholar 

  • Preston BL, Mustelin J, Maloney MC (2013) Climate adaptation heuristics and the science/policy divide. Mitig Adapt Strat Glob Change 20(3):467–497. https://doi.org/10.1007/s11027-013-9503-x

    Article  Google Scholar 

  • Republique Togolaise (2015) troisieme communication nationale sur les changements cllimatiques

    Google Scholar 

  • Reynolds J, Fernando F, Maestre T, Paul R, Kemp D, Mark Stafford-Smith, Lambin E (2007) Natural and human dimensions of land degradation in drylands: Causes and consequences. Terres Ecosyst Chang World 247–57. https://doi.org/10.1007/978-3-540-32730-1_20.s

  • Runyan CW, Stehm J (2019) Land use change, deforestation and competition for land due to food production. In: Ferranti P, Elliot M, Berry JRA (eds) Encyclopedia of food security and sustainability. Elsevier, pp 21–26. https://doi.org/10.1016/B978-0-08-100596-5.21995-1.

  • Schreckenberg K, Franks P, Martin A, Lang B (2016) unpacking equity for protected area conservation, 22 November

    Google Scholar 

  • Scherr SJ, McNeely JA (2008) Biodiversity conservation and agricultural sustainability: towards a new paradigm of ‘ecoagriculture’ landscapes. Philos Trans R Soc Biol Sci. 363:477–494

    Article  Google Scholar 

  • Shelar R, Singh AK, Maji, S (2022) Constraints in adapting the climate change in Konkan Region of Maharashtra. Ind J Exten Edu 58(1):169–171. https://doi.org/10.48165/ijee.2022.58132

  • Shi C, Chu E, Anguelovski I, Aylett A, Debats J, Goh KT, Schenk TKC, Seto KC, Dodaman D, Roberts D, Roberts JT, Van Deveer SD (2016) Roadmap towards justice in urban climate adaptation research. Nat Clim Change 6:131–137. https://doi.org/10.1038/nclimate2841

    Article  Google Scholar 

  • Sinare H, Gordon LJ, Kautsky EE (2016) Assessment of ecosystem services and bene fi ts in village landscapes: a case study from Burkina Faso. Ecosyst Serv 21:141–152. https://doi.org/10.1016/j.ecoser.2016.08.004

    Article  Google Scholar 

  • Singh C, Iyer S, New MG, Few R, Kuchimanchi B, Segnon AC, Morchain D (2021a) Interrogating ‘effectiveness’ in climate change adaptation: 11 guiding principles for adaptation research and practice. Climate Dev 1–15. https://doi.org/10.1080/17565529.2021.1964937

  • Togolaise R (2010) Plan Sectoriel De L’Education, 2015

    Google Scholar 

  • Tompkins EL., Vincent K, Nicholls RJ, Suckall N (2018) Documenting the state of adaptation for the global stocktake of the Paris agreement. WIRES Climate Change, 9(5), 1–9. https://doi.org/ https://doi.org/10.1002/wcc.545

  • UN (2015a) Sendai framework for disaster risk reduction 2015a–2030. United Nations Office for Disaster Risk Reduction, Geneva, Switzerland https://www.unisdr.org/we/inform/publications/43291

  • UN (2015b) Transforming our world: The 2030 agenda for sustainable development (A/RES/70/1, 25 September 2015b). United Nations, New York, NY https://sustainabledevelopment.un.org/?menu=1300

  • UNEP-GEF Volta Project (2012) Volta basin transboundary diagnostic analysis. Unep/gef/volta/rr 4:153

    Google Scholar 

  • United Nations (2015) Paris agreement

    Google Scholar 

  • van Noordwijk M, Gitz V, Minang PA, Dewi S, Leimona B, Duguma L MeybeckA (2020) People-centric nature-based land restoration through agroforestry: a typology. Land 9(8). https://doi.org/10.3390/LAND9080251

  • West SE, Williams RC (2004) Estimates from a consumer demand system: implications for the incidence of environmental taxes. J Environ Econ Manag 47(3):535–558. https://doi.org/10.1016/j.jeem.11.004

    Article  MATH  Google Scholar 

  • Yao KMA, Obeng F, Ntajal J, Tounou AK, Kone B (2018) Vulnerability of farming communities to malaria in the Bole district. Ghana. Parasite Epidemiology and Control 3(4):e00073. https://doi.org/10.1016/j.parepi.2018.e00073

    Article  PubMed  Google Scholar 

  • Zegeye H (2017) Major drivers and consequences of deforestation in Ethiopia: implications for forest conservation. Asian J Sci Technol 8:5166–5175

    Google Scholar 

Download references

Acknowledgements

We recognize the support from the Agriculture Regional Directorate of the Kara Region, agricultural extension officers during fieldwork and community outreaches as well as farming households who played a key role for participating in the survey. This study is part of the doctoral thesis of the first author (M.B).

Conflicts of Interest

All the authors have read and approved the final manuscript and declare no conflict of interest.

Funding

We appreciate the German Ministry of Education and Research (BMBF) for their financial support for this Doctoral research programme Scholarship and research grant (Grant nb. Batch 4) at the University of The Gambia through the West African Science Service Centre on Climate Change and Adapted Land Use (WASCAL) Initiative. This work was also produced with the financial aid of the Prince Albert II of Monaco Foundation through the IPCC Scholarship Programme (2021–2023). The work is solely the liability of the authors and under no circumstances may be considered as a reflection of the position of the Prince Albert II of Monaco Foundation and/or the IPCC.

Author information

Authors and Affiliations

Authors

Contributions

M.B designed the methodology, conducted the analysis, and drafted the manuscript; M.v.N advised on research design and improved the draft manuscript with inputs, suggestions, and proofreading; B.D improved the draft manuscript with inputs and suggestions; S.Y contributed with comments.

Corresponding author

Correspondence to M’koumfida Bagbohouna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bagbohouna, M., van Noordwijk, M., Diwediga, B., Yaffa, S. (2023). Soil Fertility Recovery at the Kara River Basin (Togo, West Africa): Local Solutions at the Interface of Climate and Land Use Change. In: Leal Filho, W., Kovaleva, M., Alves, F., Abubakar, I.R. (eds) Climate Change Strategies: Handling the Challenges of Adapting to a Changing Climate. Climate Change Management. Springer, Cham. https://doi.org/10.1007/978-3-031-28728-2_28

Download citation

Publish with us

Policies and ethics