Skip to main content

Spatial Distribution Modeling of Odonata in the New Aquitaine Region (France): A Tool to Target Refuge Areas Under Climate Change

  • Chapter
  • First Online:
Climate Change Strategies: Handling the Challenges of Adapting to a Changing Climate

Part of the book series: Climate Change Management ((CCM))

  • 407 Accesses

Abstract

Odonata (dragonflies and damselflies) are good indicators of climate change effects due to their fast response to climatic variables such as temperature, humidity and amount of rainfall. This study aims to investigate the effect of three scenario of climate change at a regional scale (New Aquitaine region, France) on 59 odonata species distribution using species distribution modeling methods. Those results allow to identify species that will be the most impacted by climate change but also to evaluate changes in odonata diversity across the study area, through the calculation of diversity indices for each climate scenario. 24–33% of the species are predicted loss between 75 and 100% of suitable habitat by 2100 under two scenarios. Predicted distribution map can be use by managers, and stakeholders to target areas to be protect in priority. Different approaches can be pursued: protections of areas that are suitable or will be suitable in the future for rare species and/or target areas that will be suitable for high number of species leading to a higher diversity. By protecting wetland suitable for diverse odonata species, other wetland affiliated species such as amphibians, birds, and plants might benefits from those actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43(6):1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

    Article  Google Scholar 

  • Austin MP, Van Niel KP (2011) Improving species distribution models for climate change studies: Variable selection and scale. J Biogeogr 38(1):1–8. https://doi.org/10.1111/j.1365-2699.2010.02416.x

    Article  Google Scholar 

  • Bailleux G, Couanon V, Gourvil P-Y, Soulet D (2017) Pré-atlas des odonates d’Aquitaine—Synthèse des connaissances 1972—2014. CEN Aquitaine, LPO Aquitaine, p 117

    Google Scholar 

  • Barbet-Massin M, Thuiller W, Jiguet F (2010) How much do we overestimate future local extinction rates when restricting the range of occurrence data in climate suitability models? Ecography 33(5):878–886. https://doi.org/10.1111/j.1600-0587.2010.06181.x

    Article  Google Scholar 

  • Braunisch V, Coppes J, Arlettaz R, Suchant R, Schmid H, Bollmann K (2013) Selecting from correlated climate variables : A major source of uncertainty for predicting species distributions under climate change. Ecography 36(9):971–983

    Article  Google Scholar 

  • Cerini F, Stellati L, Luiselli L, Vignoli L (2020) Long-term shifts in the communities of odonata : Effect of chance or climate change? North-Western Journal of Zoology 16(1):1–6

    Google Scholar 

  • Dingemanse NJ, Kalkman VJ (2008) Changing temperature regimes have advanced the phenology of Odonata in the Netherlands. Ecological Entomology 33(3):394–402. https://doi.org/10.1111/j.1365-2311.2007.00982.x

    Article  Google Scholar 

  • Drias. (2020). Drias, Les futurs du climat—Accueil. http://www.drias-climat.fr/

  • Elith J, Leathwick JR (2009) Species distribution models : Ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40(1):677

    Article  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1(4):330–342. https://doi.org/10.1111/j.2041-210X.2010.00036.x

    Article  Google Scholar 

  • Erwin KL (2008) Wetlands and global climate change : The role of wetland restoration in a changing world. Wetlands Ecol Manage 17(1):71. https://doi.org/10.1007/s11273-008-9119-1

    Article  Google Scholar 

  • FAUNA (2020) FAUNA—Accueil. https://observatoire-fauna.fr/

  • Franklin J (2009) Moving beyond static species distribution models in support of conservation biogeography. Divers Distrib 16(3):321–330

    Article  Google Scholar 

  • Hassall C (2012) Predicting the distributions of under-recorded Odonata using species distribution models. Insect Conservation and Diversity 5(3):192–201. https://doi.org/10.1111/j.1752-4598.2011.00150.x

    Article  Google Scholar 

  • Hassall C, Thompson DJ (2008) The effects of environmental warming on Odonata : A review. International Journal of Odonatology 11(2):131–153

    Article  Google Scholar 

  • Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thuiller W, Sykes MT (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30(6):751–777

    Article  Google Scholar 

  • Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change : A review of 22 years of recommendations. Biol Cons 142(1):14–32. https://doi.org/10.1016/j.biocon.2008.10.006

    Article  Google Scholar 

  • Hijmans RJ, Graham C (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Change Biol 12(12):2272–2281. https://doi.org/10.1111/j.1365-2486.2006.01256.x

    Article  ADS  Google Scholar 

  • IPCC (2014) Climate Change 2014 : Impacts, Adaptation, and Vulnerability. Working Group II Contribution to the IPCC 5th Assessment Report. Cambridge University Press, Cambridge, UK and New York, USA

    Google Scholar 

  • Iturbide M, Bedia J, Gutiérrez JM (2018) Background sampling and transferability of species distribution model ensembles under climate change. Global Planet Change 166:19–29. https://doi.org/10.1016/j.gloplacha.2018.03.008

    Article  ADS  Google Scholar 

  • Jaeschke A, Bittner T, Reineking B, Beierkuhnlein C (2013) Can they keep up with climate change?–Integrating specific dispersal abilities of protected Odonata in species distribution modelling. Insect Conserv Divers 6(1):93–103

    Article  Google Scholar 

  • Keil P, Simova I, Hawkins BA (2008) Water-energy and the geographical species richness pattern of European and North African dragonflies (Odonata). Insect Conservation and Diversity 1(3):142–150. https://doi.org/10.1111/j.1752-4598.2008.00019.x

    Article  Google Scholar 

  • Kramer-Schadt S, Niedballa J, Pilgrim JD, Schröder B, Lindenborn J, Reinfelder V, Stillfried M, Heckmann I, Scharf AK, Augeri DM (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 19(11):1366–1379

    Article  Google Scholar 

  • Kujala H, Moilanen A, Gordon A (2018) Spatial characteristics of species distributions as drivers in conservation prioritization. Methods Ecol Evol 9(4):1121–1132. https://doi.org/10.1111/2041-210X.12939

    Article  Google Scholar 

  • Le Treut, H (2020) Anticipating climate change in Nouvelle-Aquitaine. To guide policy at local level—Executive report. Éditions AcclimaTerra 2020, p 96

    Google Scholar 

  • Leggott M, Pritchard G (1986) Thermal preference and activity thresholds in populations of Argia vivida (Odonata : Coenagrionidae) from habitats with different thermal regimes. Hydrobiologia 140(1):85–92

    Article  Google Scholar 

  • Lémond J, Dandin P, Planton S, Vautard R, Pagé C, Déqué M, Franchistéguy L, Geindre S, Kerdoncuff M, Li L (2011) DRIAS: a step toward Climate Services in France. Adv Sci Res 6(1):179–186

    Article  Google Scholar 

  • Mallard F (coord) (2017) Programme les sentinelles du climat. Tome IV : Ajustement des protocoles d’échantillonnage et analyses exploratoires des indicateurs des effets du changement climatique sur la biodiversité en Nouvelle-Aquitaine. C. Nature. https://hal.archives-ouvertes.fr/hal-02022916

  • Mallard F (coord) (2018) Programme les sentinelles du climat. Tome VI : Résultats exploratoires des indicateurs des effets du changement climatique sur la biodiversité en Nouvelle-Aquitaine. C. Nature. https://hal.archives-ouvertes.fr/hal-02060363

  • Mallard F (coord) (2019) Programme les sentinelles du climat. Tome VIII : Écologie du changement climatique en région Nouvelle-Aquitaine. C. Nature. https://hal.archives-ouvertes.fr/hal-02495935

  • Mallard F (coord) (2020) Programme les sentinelles du climat. Tome IX : Connaitre et comprendre pour protéger les espèces animales et végétales face au changement climatique, C. Nature : Le Haillan, Gironde, 822p. https://hal.science/hal-03130349

  • Mallard F (2021a) Climate Sentinels program : Meeting the Challenge of regional biodiversity conservation adaptation to climate change. In: Leal Filho W, Luetz J, Ayal D (eds) Handbook of climate change management. Springer, Cham, pp 1–39. https://doi.org/10.1007/978-3-030-22759-3_193-1.

  • Mallard F (coord) (2021b) Programme les sentinelles du climat—Tome X: Réponses des espèces animales et végétales face au changement climatique et pistes d’actions de conservation de la biodiversité en région Nouvelle-Aquitaine. C. Nature, Le haillan (Gironde). https://hal.inria.fr/hal-03647259/

  • Mallard F, Couderchet L (2019) Climate sentinels research program : Developing indicators of the effects of climate change on biodiversity in the region of New Aquitaine (south west, France). In: Leal Filho W, Barbir J, Preziosi R (eds) Handbook of climate change and biodiversity. Climate change management. Springer, Cham, pp 223–241 https://doi.org/10.1007/978-3-319-98681-4_14.

  • Morghad F, Samraoui F, Touati L, Samraoui B (2019) The times they are a changin’ : Impact of land-use shift and climate warming on the odonate community of a Mediterranean stream over a 25-year period. Vie Et Milieu-Life and enVironment 69(1):25–33

    Google Scholar 

  • Ott J (2001) Expansion of Mediterranean Odonata in Germany and Europe—Consequences of climatic changes. In “Fingerprints” of climate change. Springer, New York, pp 89–111

    Google Scholar 

  • Ouzeau G, Déqué, M, Jouini, M, Planton, S, Vautard, R (2014) Le climat de la France au XXI siècle Volume 4, scénarios régionalisés: Édition 2014 pour la métropole et les régions d’outre-mer (No 4). Ministère de l’écologie et du développement durable, pp 1–64

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

  • Termaat T, van Strien AJ, van Grunsven RHA, De Knijf G, Bjelke U, Burbach K, Conze K-J, Goffart P, Hepper D, Kalkman VJ, Motte G, Prins MD, Prunier F, Sparrow D, van den Top GG, Vanappelghem C, Winterholler M, WallisDeVries MF (2019) Distribution trends of European dragonflies under climate change. Divers Distrib 25(6):936–950. https://doi.org/10.1111/ddi.12913

    Article  Google Scholar 

  • Thuiller W, Brotons L, Araújo MB, Lavorel S (2004) Effects of restricting environmental range of data to project current and future species distributions. Ecography 27(2):165–172

    Article  Google Scholar 

  • Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD–a platform for ensemble forecasting of species distributions. Ecography 32(3):369–373

    Article  Google Scholar 

  • Wisz MS, Hijmans R, Li J, Peterson AT, Graham C, Guisan A, NCEAS Predicting Species Distributions Working Group (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14(5):763–773

    Google Scholar 

Download references

Acknowledgements

This work would not have been possible without support from the European Union (the European Regional Development Fund—Feder), the French region of New Aquitaine, and the French departments of “Gironde” and “Pyrénées-Atlantiques.” We thank these organizations for their support and funding from 2016 to 2021, as well as our technical partners Météo France and Conservatory of Natural Area of Aquitaine (CEN). We also thank the members of the 2016–2019 Scientific Council of the program, including Hervé Le Treut, Honorary President of the Scientific Council, Professor at Pierre and Marie Curie University, for their opinions, analyses, advice, and validation of the methods, protocols, models, and results. Finally, we thank Akaren Goudiaby, Pierre-Yves Gourvil, and Gilles Bailleux for sharing their knowledge on Odonata and their useful remarks on the model results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anouk Glad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Glad, A., Mallard, F. (2023). Spatial Distribution Modeling of Odonata in the New Aquitaine Region (France): A Tool to Target Refuge Areas Under Climate Change. In: Leal Filho, W., Kovaleva, M., Alves, F., Abubakar, I.R. (eds) Climate Change Strategies: Handling the Challenges of Adapting to a Changing Climate. Climate Change Management. Springer, Cham. https://doi.org/10.1007/978-3-031-28728-2_26

Download citation

Publish with us

Policies and ethics