Skip to main content

Knitting a Markov Blanket is Hard When You are Out-of-Equilibrium: Two Examples in Canonical Nonequilibrium Models

  • Conference paper
  • First Online:
Active Inference (IWAI 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1721))

Included in the following conference series:

  • 399 Accesses

Abstract

Bayesian theories of biological and brain function speculate that Markov blankets (a conditional independence separating a system from external states) play a key role for facilitating inference-like behaviour in living systems. Although it has been suggested that Markov blankets are commonplace in sparsely connected, nonequilibrium complex systems, this has not been studied in detail. Here, we show in two different examples (a pair of coupled Lorenz systems and a nonequilibrium Ising model) that sparse connectivity does not guarantee Markov blankets in the steady-state density of nonequilibrium systems. Conversely, in the nonequilibrium Ising model explored, the more distant from equilibrium the system appears to be correlated with the distance from displaying a Markov blanket. These result suggests that further assumptions might be needed in order to assume the presence of Markov blankets in the kind of nonequilibrium processes describing the activity of living systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguilera, M., Di Paolo, E.A.: Integrated information in the thermodynamic limit. Neural Netw. 114, 136–146 (2019)

    Article  Google Scholar 

  2. Aguilera, M., Igarashi, M., Shimazaki, H.: Nonequilibrium thermodynamics of the asymmetric Sherrington-Kirkpatrick model. arXiv preprint arXiv:2205.09886 (2022)

  3. Aguilera, M., Millidge, B., Tschantz, A., Buckley, C.L.: How particular is the physics of the free energy principle? Phys. Life Rev. (2022). https://doi.org/10.1016/j.plrev.2021.11.001

    Article  Google Scholar 

  4. Aguilera, M., Moosavi, S.A., Shimazaki, H.: A unifying framework for mean-field theories of asymmetric kinetic Ising systems. Nat. Commun. 12(1), 1–12 (2021)

    Article  Google Scholar 

  5. Biehl, M., Pollock, F.A., Kanai, R.: A technical critique of some parts of the free energy principle. Entropy 23(3), 293 (2021)

    Article  MathSciNet  Google Scholar 

  6. Crooks, G.E.: Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems. J. Stat. Phys. 90(5), 1481–1487 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eyink, G.L., Lebowitz, J.L., Spohn, H.: Hydrodynamics and fluctuations outside of local equilibrium: driven diffusive systems. J. Stat. Phys. 83(3), 385–472 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Friston, K.: Life as we know it. J. R. Soc. Interface 10(86), 20130475 (2013)

    Article  Google Scholar 

  9. Friston, K.: A free energy principle for a particular physics. arXiv preprint arXiv:1906.10184 (2019)

  10. Friston, K.: Very particular: comment on “how particular is the physics of the free energy principle?’’. Phys. Life Rev. 41, 58–60 (2022)

    Article  Google Scholar 

  11. Friston, K., et al.: The free energy principle made simpler but not too simple. arXiv preprint arXiv:2201.06387 (2022)

  12. Friston, K., Heins, C., Ueltzhöffer, K., Da Costa, L., Parr, T.: Stochastic chaos and Markov blankets. Entropy 23(9), 1220 (2021)

    Article  MathSciNet  Google Scholar 

  13. Friston, K.J., Da Costa, L., Parr, T.: Some interesting observations on the free energy principle. Entropy 23(8), 1076 (2021)

    Article  MathSciNet  Google Scholar 

  14. Friston, K.J., et al.: Parcels and particles: Markov blankets in the brain. Netw. Neurosci. 5(1), 211–251 (2021)

    Article  Google Scholar 

  15. Graham, R.: Covariant formulation of non-equilibrium statistical thermodynamics. Zeitschrift für Phys. B Condens. Matt. 26(4), 397–405 (1977)

    MathSciNet  Google Scholar 

  16. Heins, C., Da Costa, L.: Sparse coupling and markov blankets: a comment on “how particular is the physics of the free energy principle?” By Aguilera, Millidge, Tschantz and Buckley. Phys. Life Rev. 42, 33–39 (2022)

    Google Scholar 

  17. Hipólito, I., Ramstead, M.J., Convertino, L., Bhat, A., Friston, K., Parr, T.: Markov blankets in the brain. Neurosci. Biobehav. Rev. 125, 88–97 (2021)

    Article  Google Scholar 

  18. Ito, S., Oizumi, M., Amari, S.I.: Unified framework for the entropy production and the stochastic interaction based on information geometry. Phys. Rev. Res. 2(3), 033048 (2020)

    Article  Google Scholar 

  19. Jarzynski, C.: Hamiltonian derivation of a detailed fluctuation theorem. J. Stat. Phys. 98(1), 77–102 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  21. Parr, T., Da Costa, L., Heins, C., Ramstead, M.J.D., Friston, K.J.: Memory and Markov blankets. Entropy 23(9), 1105 (2021)

    Article  MathSciNet  Google Scholar 

  22. Pavliotis, G.A.: Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations, vol. 60. Springer, Heidelberg (2014). https://doi.org/10.1007/978-1-4939-1323-7

    Book  MATH  Google Scholar 

  23. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann (1988)

    Google Scholar 

  24. Richardson, T.S., Spirtes, P., et al.: Automated discovery of linear feedback models. Carnegie Mellon [Department of Philosophy] (1996)

    Google Scholar 

  25. Roudi, Y., Dunn, B., Hertz, J.: Multi-neuronal activity and functional connectivity in cell assemblies. Curr. Opin. Neurobiol. 32, 38–44 (2015)

    Article  Google Scholar 

  26. Schnakenberg, J.: Network theory of microscopic and macroscopic behavior of master equation systems. Rev. Mod. Phys. 48(4), 571–585 (1976). https://doi.org/10.1103/RevModPhys.48.571

    Article  MathSciNet  Google Scholar 

  27. Seifert, U.: Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75(12), 126001 (2012)

    Google Scholar 

  28. Tomita, K., Tomita, H.: Irreversible circulation of fluctuation. Progress Theoret. Phys. 51(6), 1731–1749 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Aguilera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aguilera, M., Poc-López, Á., Heins, C., Buckley, C.L. (2023). Knitting a Markov Blanket is Hard When You are Out-of-Equilibrium: Two Examples in Canonical Nonequilibrium Models. In: Buckley, C.L., et al. Active Inference. IWAI 2022. Communications in Computer and Information Science, vol 1721. Springer, Cham. https://doi.org/10.1007/978-3-031-28719-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28719-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28718-3

  • Online ISBN: 978-3-031-28719-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics