Skip to main content

Microwave Ultra-Wideband Imaging for Non-invasive Temperature Monitoring During Hyperthermia Treatment

  • Chapter
  • First Online:
Electromagnetic Imaging for a Novel Generation of Medical Devices

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

  • 243 Accesses

Abstract

Microwave medical imaging can become a good alternative for common imaging approaches in the very near future since it is safe due to non-ionizing radiation, cost-efficient and to this end promising for clinical applications. This chapter is devoted to microwave imaging for non-invasive temperature monitoring during hyperthermia therapy. To ensure a constant desired temperature level in the cancerous tissue and to prevent damage of healthy cells, accurate temperature control is necessary during thermal treatment. We present a temperature estimation approach based on the ultra-wideband M-sequence radar technology developed at the Technische Universitaet Ilmenau. The methodology is based on the knowledge of temperature dependencies of tissue physical parameters and on ongoing ultra-wideband measurements, followed by imaging and estimation of dielectric properties which are converted to temperature values. The prototype components from both sensing and heating parts of the system are investigated numerically so that suitable configurations of the antenna array can be defined. Furthermore, the system is experimentally validated on a neck phantom filled with corresponding tissue mimicking materials, which well imitate the dielectric properties of the specific tissues. Exemplary results of these developments are presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 71(3), 209–249 (2021)

    Article  Google Scholar 

  2. National Cancer Institute, Types of cancer treatment, in Nih (2015), pp. 1–4

    Google Scholar 

  3. E.S. Glazer, S.A. Curley, The ongoing history of thermal therapy for cancer. Surg. Oncol. Clin. N. Am. 20(2) (2011)

    Google Scholar 

  4. B.S. Sørensen, M.R. Horsman, Tumor hypoxia: impact on radiation therapy and molecular pathways, in Frontiers in Oncology, vol. 10 (Frontiers Media S.A., 21 April 2020), p. 562

    Google Scholar 

  5. K. Graham, E. Unger, Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int. J. Nanomed. 13, 6049–6058 (2018). Dove Press

    Google Scholar 

  6. R. Merten, O. Ott, M. Haderlein, S. Bertz, A. Hartmann, B. Wullich, B. Keck, R. Kühn, C. M. Rödel, C. Weiss, C. Gall, W. Uter, R. Fietkau, Long-term experience of chemoradiotherapy combined with deep regional hyperthermia for organ preservation in high-risk bladder cancer (Ta, Tis, T1, T2) (2019)

    Google Scholar 

  7. M.M. Paulides, EM hyperthermia in radiation oncology. 9–13 (Sept 2019)

    Google Scholar 

  8. N.R. Datta, B. Pestalozzi, P.A. Clavien, A. Siebenhüner, E. Puric, S. Khan, C. Mamot, O. Riesterer, J. Knuchel, C.S. Reiner, S. Bodis, M. De Oliveira, H. Petrowsky, T. Winder, M. Guckenberger, S. Lang, P. Bauerfeind, B. Bode, O. Tschalèr, D. Marder, T. Roeren, R. Grobholz, B. Seifert, HEATPAC—a phase II randomized study of concurrent thermochemoradiotherapy versus chemoradiotherapy alone in locally advanced pancreatic cancer. Radiat. Oncol. 12(1), 1–10 (2017)

    Article  Google Scholar 

  9. N.G. Huilgol, S. Gupta, C.R. Sridhar, Hyperthermia with radiation in the treatment of locally advanced head and neck cancer: a report of randomized trial. J. Cancer Res. Ther. 6(4), 492–496 (2010)

    Article  Google Scholar 

  10. European Society of Oncology, Publications. [Online]. Available: https://www.esho.info/publications/. Accessed 15 July 2022

  11. Z.K. Roesch, P. Tadi, Anatomy, Head and Neck (StatPearls Publishing, Neck, 2019)

    Google Scholar 

  12. Chapter 25. Overview of the Neck|The Big Picture: Gross Anatomy | AccessMedicine|McGraw Hill Medical.” [Online]. Available https://accessmedicine.mhmedical.com/content.aspx?bookid=381&sectionid=40140034. Accessed 15 July 2022

  13. National Cancer Institute, A to Z list of cancer types—national cancer institute, in National Cancer Institute, 2016. [Online]. Available https://www.cancer.gov/types. Accessed 15 July 2022

  14. Head and Neck Cancer: Stages|Cancer.Net. [Online]. Available https://www.cancer.net/cancer-types/head-and-neck-cancer/stages. Accessed 15 July 2022

  15. R. Zweije, H.P. Kok, A. Bakker, A. Bel, J. Crezee, Technical and clinical evaluation of the ALBA-4D 70 MHz loco-regional hyperthermia system, in 2018 48th European Microwave Conference, EuMC 2018 (2018), pp. 328–331

    Google Scholar 

  16. H. Kato, M. Kuroda, K. Shibuya, S. Kanazawa, Focused deep heating with an inductive type applicator. Therm. Med. 23(3), 133–143 (2007)

    Article  Google Scholar 

  17. M.M. Paulides, G.M. Verduijn, N. Van Holthe, Status quo and directions in deep head and neck hyperthermia. Radiat. Oncol. 11(1) (2016)

    Google Scholar 

  18. H.P. Kok, G. Van Stam, J. Sijbrands, A. Bakker, M.W. Kolff, G. Van Tienhoven, M.C.C.M. Hulshof, J. Crezee, Clinical use of a waveguide hyperthermia system for superficial tumors with deep infiltration, in European Microwave Week 2017: A Prime Year for a Prime Event, EuMW 2017—Conference Proceedings; 47th European Microwave Conference, EuMC 2017, vol. 2017 (Jan 2017), pp. 868–871

    Google Scholar 

  19. H.D. Trefná, J. Vrba, M. Persson, Physics in medicine and biology to cite this article: Hana Dobšíek Trefná et al. Phys. Med. Biol. Phys. Med. Biol 55, 2167–2185 (2010)

    Article  Google Scholar 

  20. American Cancer Society, Hyperthermia to treat cancer. Am. Cancer Soc. 1–5 (2016)

    Google Scholar 

  21. P. Wust, C.H. Cho, B. Hildebrandt, J. Gellermann, Thermal monitoring: Invasive, minimal-invasive and non-invasive approaches. Int. J. Hyperth. 22(3), 255–262 (2006)

    Article  Google Scholar 

  22. E. Schena, D. Tosi, P. Saccomandi, E. Lewis, T. Kim, Fiber optic sensors for temperature monitoring during thermal treatments: an overview. Sensors (Switzerland) 16(7) (22 July 2016). MDPI AG

    Google Scholar 

  23. F. Adibzadeh, K. Sumser, S. Curto, D.T.B. Yeo, A.A. Shishegar, M.M. Paulides, Systematic review of pre-clinical and clinical devices for magnetic resonance-guided radiofrequency hyperthermia. Int. J. Hyperth. 37(1), 15–27 (01 Jan 2020). Taylor and Francis Ltd

    Google Scholar 

  24. D. Mazumder, R.M. Vasu, D. Roy, R. Kanhirodan, A remote temperature sensor for an ultrasound hyperthermia system using the acoustic signal derived from the heating signals. Int. J. Hyperth. 34(1), 122–131 (2018)

    Article  Google Scholar 

  25. E. Groumpas, M. Koutsoupidou, I.S. Karanasiou, C. Papageorgiou, N. Uzunoglu, Real-time passive brain monitoring system using near-field microwave radiometry. IEEE Trans. Biomed. Eng. 67(1), 158–165 (2020)

    Article  Google Scholar 

  26. G. Chen, J. Stang, M. Haynes, E. Leuthardt, M. Moghaddam, Real-time three-dimensional microwave monitoring of interstitial thermal therapy. IEEE Trans. Biomed. Eng. 65(3), 528–538 (2018)

    Article  Google Scholar 

  27. J.C. Bolomey, L. Jofre, Three decades of active microwave imaging achievements, difficulties and future challenges, In 2010 IEEE International Conference Wireless Information Technology System ICWITS 2010, no. 1 (2010)

    Google Scholar 

  28. F.G. Shellock, Magnetic resonance safety update 2002: implants and devices. J. Magn. Reson. Imaging. 16(5), 485–496 (01 Nov 2002)

    Google Scholar 

  29. T. Drizdal, K. Sumser, G.G. Bellizzi, O. Fiser, J. Vrba, G. C.V. Rhoon, D.T.B. Yeo, M.M. Paulides, Simulation guided design of the MRcollar: a MR compatible applicator for deep heating in the head and neck region. Int. J. Hyperth. 38(1), 382–392 (2021)

    Google Scholar 

  30. E.C. Fear, X. Li, S.C. Hagness, M.A. Stuchly, Confocal microwave imaging for breast cancer detection: localization of tumors in three dimensions. IEEE Trans. Biomed. Eng. 49(8), 812–822 (2002)

    Article  Google Scholar 

  31. N.R. Epstein, P.M. Meaney, K.D. Paulsen, 3D parallel-detection microwave tomography for clinical breast imaging. Rev. Sci. Instrum. 85(12), (Dec 2014)

    Google Scholar 

  32. T. Henriksson, M. Klemm, D. Gibbins, J. Leendertz, T. Horseman, A.W. Preece, R. Benjamin, I.J. Craddock, Clinical trials of a multistatic UWB radar for breast imaging, in LAPC 2011–2011 Loughborough Antennas and Propagation Conference (2011)

    Google Scholar 

  33. P.H. Tournier, F. Hecht, F. Nataf, S. Semenov, M. Bonazzoli, F. Rapetti, V. Dolean, I. El Kanfoud, I. Aliferis, C. Migliaccio, C. Pichot, Microwave tomography for brain stroke imaging, in 2017 IEEE Antennas and Propagation Society International Symposium, Proceedings, vol. 2017 (Jan 2017), pp. 29–30

    Google Scholar 

  34. J. Ljungqvist, S. Candefjord, M. Persson, L. Jönsson, T. Skoglund, M. Elam, Clinical evaluation of a microwave-based device for detection of traumatic intracranial hemorrhage. J. Neurotrauma 34(13), 2176–2182 (2017)

    Article  Google Scholar 

  35. A.T. Mobashsher, A.M. Abbosh, Y. Wang, Microwave system to detect traumatic brain injuries using compact unidirectional antenna and wideband transceiver with verification on realistic head phantom. IEEE Trans. Microw. Theory Tech. 62(9), 1826–1836 (2014)

    Article  Google Scholar 

  36. A. Zamani, S.A. Rezaeieh, A.M. Abbosh, Lung cancer detection using frequency-domain microwave imaging. Electron. Lett. 51(10), 740–741 (2015)

    Article  Google Scholar 

  37. F. Töpfer, S. Dudorov, J. Oberhammer, Millimeter-wave near-field probe designed for high-resolution skin cancer diagnosis. IEEE Trans. Microw. Theory Tech. 63(6), 2050–2059 (2015)

    Article  Google Scholar 

  38. E. Porter, A. La Gioia, S. Salahuddin, S. Decker, A. Shahzad, M.A. Elahi, M. O’Halloran, O. Beyan, Minimum information for dielectric measurements of biological tissues (MINDER): a framework for repeatable and reusable data. Int. J. RF Microw. Comput. Eng. 28(3), e21201 (2018)

    Article  Google Scholar 

  39. S. Salahuddin, L. Farrugia, C.V. Sammut, M. O’Halloran, E. Porter, Dielectric properties of fresh human blood, in Proceedings of the 2017 19th International Conference on Electromagnetics in Advanced Applications, ICEAA 2017 (2017), pp. 356–359

    Google Scholar 

  40. S. Gabriel, R.W. Lau, C. Gabriel, The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41(11), 2251–2269 (1996)

    Article  Google Scholar 

  41. A. Martellosio, M. Pasian, M. Bozzi, L. Perregrini, A. Mazzanti, F. Svelto, P.E. Summers, G. Renne, L. Preda, M. Bellomi, Dielectric properties characterization from 0.5 to 50 GHz of breast cancer tissues. IEEE Trans. Microw. Theory Tech. 65(3), 998–1011 (2017)

    Article  Google Scholar 

  42. V. Lopresto, R. Pinto, G.A. Lovisolo, M. Cavagnaro, Changes in the dielectric properties of ex vivo bovine liver during microwave thermal ablation at 2.45 GHz. Phys. Med. Biol. 57(8), 2309–2327 (2012)

    Article  Google Scholar 

  43. A.P. O’Rourke, M. Lazebnik, J.M. Bertram, M.C. Converse, S.C. Hagness, J.G. Webster, D.M. Mahvi, Dielectric properties of human normal, malignant and cirrhotic liver tissue: in vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe. Phys. Med. Biol. 52(15), 4707–4719 (2007)

    Article  Google Scholar 

  44. M. Lazebnik, M.C. Converse, J.H. Booske, S.C. Hagness, Ultrawideband temperature-dependent dielectric properties of animal liver tissue in the microwave frequency range. Phys. Med. Biol. 51(7), 1941–1955 (2006)

    Article  Google Scholar 

  45. J. Bonello, A. Elahi, L. Farrguia, C.V. Sammut, M. O’Hollaran, E. Porter, R. Balduino, Temperature-Dependent Dielectric Properties of Lung, in 2018 2nd URSI Atlantic Radio Science Meeting, AT-RASC 2018 (2018)

    Google Scholar 

  46. A. Prokhorova, S. Ley, O. Fiser, J. Vrba, J. Sachs, M. Helbig, Temperature dependent dielectric properties of tissue mimicking phantom material in the microwave frequency range, in 14th European Conference Antennas Propagation, EuCAP 2020 (2020), pp. 1–5

    Google Scholar 

  47. S. Ley, S. Schilling, O. Fiser, J. Vrba, J. Sachs, M. Helbig, Ultra-wideband temperature dependent dielectric spectroscopy of porcine tissue and blood in the microwave frequency range. Sensors (Switzerland) 19(7), 1707 (2019)

    Article  Google Scholar 

  48. D. Byrne, M. Sarafianou, I.J. Craddock, Compound radar approach for breast imaging. IEEE Trans. Biomed. Eng. 64(1), 40–51 (2017)

    Article  Google Scholar 

  49. E.J. Bond, B.D. Van Veen, S.C. Hagness, X. Li, An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection. IEEE Antennas Propag. Mag. 47(1), 19–34 (2005)

    Article  Google Scholar 

  50. M. Helbig, B. Faenger, S. Ley, I. Hilger, Multistatic M-sequence UWB radar system for microwave breast imaging, in 2021 IEEE conference on antenna measurements and applications, CAMA 2021 (2021), pp. 540–545

    Google Scholar 

  51. I. Saied, T. Arslan, S. Chandran, C. Smith, T. Spires-Jones, S. Pal, Non-invasive RF technique for detecting different stages of Alzheimer’s disease and imaging beta-amyloid plaques and tau tangles in the brain. IEEE Trans. Med. Imaging 39(12), 4060–4070 (2020)

    Article  Google Scholar 

  52. D.O. Rodriguez-Duarte, J.A. Tobon Vasquez, R. Scapaticci, G. Turvani, M. Cavagnaro, M.R. Casu, L. Crocco, F. Vipiana, Experimental validation of a microwave system for brain stroke 3-d imaging. Diagnostics 11(7) (2021)

    Google Scholar 

  53. J. Sachs, M. Helbig, R. Herrmann, M. Kmec, K. Schilling, E. Zaikov, Remote vital sign detection for rescue, security, and medical care by ultra-wideband pseudo-noise radar. Ad Hoc Networks 13(PART A), 42–53 (Feb 2014)

    Google Scholar 

  54. H. Xu, M.P. Ebrahim, K. Hasan, F. Heydari, P. Howley, M.R. Yuce, Accurate heart rate and respiration rate detection based on a higher-order harmonics peak selection method using radar non-contact sensors. Sensors 22(1), 83 (2022)

    Article  Google Scholar 

  55. J. Sachs, Handbook of ultra-wideband short-range sensing: theory, sensors, applications. (Wiley-VCH 2012)

    Google Scholar 

  56. M. Helbig, K. Dahlke, I. Hilger, M. Kmec, J. Sachs, Design and test of an imaging system for UWB breast cancer detection. Frequenz 66(11–12), 387–394 (2012)

    Google Scholar 

  57. R. Scapaticci, V. Lopresto, R. Pinto, M. Cavagnaro, L. Crocco, Monitoring thermal ablation via microwave tomography: an Ex vivo experimental assessment. Diagnostics 8(4), 81 (2018)

    Article  Google Scholar 

  58. A. Prokhorova, S. Ley, A.Y. Ruiz, R. Scapaticci, L. Crocco, M. Helbig, Preliminary investigations of microwave imaging algorithms for tissue temperature estimation during hyperthermia treatment, in 2021 International Conference on Electromagnetics in Advanced Applications, ICEAA 2021 (2021), pp. 79–84

    Google Scholar 

  59. A. Prokhorova, S. Ley, M. Helbig, Quantitative interpretation of UWB radar images for non-invasive tissue temperature estimation during hyperthermia. Diagnostics 11(5), 818 (2021)

    Article  Google Scholar 

  60. S. Ley, O. Fiser, I. Merunka, J. Vrba, J. Sachs, M. Helbig, Preliminary investigations for non-invasive temperature change detection in thermotherapy by means of UWB microwave radar, in Conference Proceedings Annual International Conference IEEE Engineering Medicine Biology Society, vol. 2018 (July 2018), pp. 5386–5389

    Google Scholar 

  61. O. Fišer, Microwave hyperthermia for treatment of head and neck tumors controlled by non-invasive temperature monitoring based on UWB radar doctoral thesis (2018)

    Google Scholar 

  62. O. Fiser, I. Merunka, J. Vrba, Waveguide applicator system for head and neck hyperthermia treatment. J. Electr. Eng. Technol. 11(6), 1744–1753 (2016)

    Article  Google Scholar 

  63. A.N. Vasavada, J. Danaraj, G.P. Siegmund, Head and neck anthropometry, vertebral geometry and neck strength in height-matched men and women. J. Biomech. 41(1), 114–121 (2008)

    Article  Google Scholar 

  64. M.M. Paulides, G.M. Verduijn, N. Van Holthe, Status quo and directions in deep head and neck hyperthermia. Radiat. Oncol. 11(1), 1–14 (2016)

    Article  Google Scholar 

  65. M. Helbig, J.H. Koch, S. Ley, R. Herrmann, M. Kmec, K. Schilling, J. Sachs, Development and test of a massive MIMO system for fast medical UWB imaging, in Proceedings of the 2017 19th International Conference on Electromagnetics in Advanced Applications, ICEAA 2017 (2017), pp. 1331–1334

    Google Scholar 

Download references

Acknowledgements

This work was done in the framework of EMERALD project funded by European Union Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Actions, Grant Agreement No. 764479.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Prokhorova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prokhorova, A., Fiser, O., Vrba, J., Helbig, M. (2023). Microwave Ultra-Wideband Imaging for Non-invasive Temperature Monitoring During Hyperthermia Treatment. In: Vipiana, F., Crocco, L. (eds) Electromagnetic Imaging for a Novel Generation of Medical Devices. Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-031-28666-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28666-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28665-0

  • Online ISBN: 978-3-031-28666-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics