Skip to main content

War-Related Amputations and Prostheses in the Pediatric Population

  • Chapter
  • First Online:
The War Injured Child

Abstract

Pediatric traumatic limb amputations are one of the most severe and extensive injuries and present unique challenges not only for the injured but for their caregivers, the health system, and society; and this burden is magnified in conflict settings suffering from long-term social health and economic crises. A major challenge in complex extremity injuries is deciding which management route to take to get the most satisfactory outcome for the patient. In this chapter, we present different factors that dictate not only the decision to either amputate or salvage a limb but also the outcome as well as the anatomic and physiologic considerations in pediatric patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. UN Security Council. Children and armed conflict: Report of the Secretary-General. 2019. Report No.: S/2019/509.

    Google Scholar 

  2. UN Security Council Resolution 1261, S/RES/1261 (1999).

    Google Scholar 

  3. Pearn J. Children and war. J Paediatr Child Health. 2003;39(3):166–72.

    Article  CAS  PubMed  Google Scholar 

  4. Bertani A, Mathieu L, Dahan JL, Launay F, Rongieras F, Rigal S. War-related extremity injuries in children: 89 cases managed in a combat support hospital in Afghanistan. Orthop Traumatol Surg Res. 2015;101(3):365–8.

    Article  CAS  PubMed  Google Scholar 

  5. Heszlein-Lossius HE, Al-Borno Y, Shaqqoura S, Skaik N, Giil LM, Gilbert M. Life after conflict-related amputation trauma: a clinical study from the Gaza strip. BMC Int Health Hum Rights. 2018;18(1):34.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Naaman O, Yulevich A, Sweed Y. Syria civil war pediatric casualties treated at a single medical center. J Pediatr Surg. 2019;

    Google Scholar 

  7. A century of advances in prostheses. Nat Mater. 2018;17(11):945.

    Google Scholar 

  8. Fleigel O, Feuer SG. Historical development of lower-extremity prostheses. Archives of Medicine and Rehabilitation. 1966;47:275–85.

    Google Scholar 

  9. Sherman ED. A Russian bioelectric-controlled prosthesis: report of a research team from the rehabilitation institute of Montreal. Can Med Assoc J. 1964;91:1268–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kuiken TA, Dumanian GA, Lipschutz RD, Miller LA, Stubblefield KA. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthetics Orthot Int. 2004;28(3):245–53.

    Article  CAS  Google Scholar 

  11. MacKenzie EJ, Jones AS, Bosse MJ, Castillo RC, Pollak AN, Webb LX, et al. Health-care costs associated with amputation or reconstruction of a limb-threatening injury. J Bone Joint Surg Am. 2007;89(8):1685–92.

    Article  PubMed  Google Scholar 

  12. Schiro GR, Sessa S, Piccioli A, Maccauro G. Primary amputation vs limb salvage in mangled extremity: a systematic review of the current scoring system. BMC Musculoskelet Disord. 2015;16:372.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mommsen P, Zeckey C, Hildebrand F, Frink M, Khaladj N, Lange N, et al. Traumatic extremity arterial injury in children: epidemiology, diagnostics, treatment and prognostic value of mangled extremity severity score. J Orthop Surg Res. 2010;5:25.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Stewart DA, Coombs CJ, Graham HK. Application of lower extremity injury severity scores in children. J Child Orthop. 2012;6(5):427–31.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fagelman MF, Epps HR, Rang M. Mangled extremity severity score in children. J Pediatr Orthop. 2002;22(2):182–4.

    Article  PubMed  Google Scholar 

  16. Prasarn ML, Helfet DL, Kloen P. Management of the mangled extremity. Strategies Trauma Limb Reconstr. 2012;7(2):57–66.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Higgins TF, Klatt JB, Beals TC. Lower Extremity Assessment Project (LEAP)--the best available evidence on limb-threatening lower extremity trauma. Orthop Clin North Am. 2010;41(2):233–9.

    Article  PubMed  Google Scholar 

  18. MacKenzie EJ, Bosse MJ. Factors influencing outcome following limb-threatening lower limb trauma: lessons learned from the lower extremity assessment project (LEAP). J Am Acad Orthop Surg. 2006;14(10):S205–10.

    Article  PubMed  Google Scholar 

  19. Mitchell SL, Hayda R, Chen AT, Carlini AR, Ficke JR, MacKenzie EJ, et al. The military extremity trauma amputation/limb salvage (METALS) study: outcomes of amputation compared with limb salvage following major upper-extremity trauma. J Bone Joint Surg Am. 2019;101(16):1470–8.

    Article  PubMed  Google Scholar 

  20. Molina CS, Faulk J. Lower extremity amputation. StatPearls Publishing.

    Google Scholar 

  21. Fergason J, Keeling JJ, Bluman EM. Recent advances in lower extremity amputations and prosthetics for the combat injured patient. Foot Ankle Clin. 2010;15(1):151–74.

    Article  PubMed  Google Scholar 

  22. Waters RL, Perry J, Antonelli DA, Hislop H. Energy cost of walking of amputees: the influence of level of amputation. J Bone Joint Surg Am. 1976;58(1):42–6.

    Article  CAS  PubMed  Google Scholar 

  23. Guerra-Farfán E, Nuñez JH, Sanchez-Raya J, Crespo-Fresno A, Anglés F, Minguell J. Prosthetic limb options for below and above knee amputations: making the correct choice for the right patient. Current Trauma Reports. 2018;4(4):247–55.

    Article  Google Scholar 

  24. Meier RH, Melton D. Ideal functional outcomes for amputation levels. Phys Med Rehabil Clin. 2014;25(1):199–212.

    Article  Google Scholar 

  25. Peterson LT. Administrative considerations in the amputation program. Orthopedic surgery in the zone of interior. Washington, DC: Office of the Surgeon General, Department of the Army; 1970. p. 865–912.

    Google Scholar 

  26. Purry NA, Hannon MA. How successful is below-knee amputation for injury? Injury. 1989;20(1):32–6.

    Article  CAS  PubMed  Google Scholar 

  27. Karami R, Hoballah JJ. Amputations and prostheses. In: Reconstructing the war injured patient. Cham: Springer; 2017. p. 165–80.

    Chapter  Google Scholar 

  28. Burgess EM. The below-knee amputation Bull Prosthet Res. 1968;5:19–25.

    Google Scholar 

  29. Jain SK. Skew flap technique in trans-tibial amputation. Prosthetics Orthot Int. 2005;29(3):283–90.

    Article  CAS  Google Scholar 

  30. Tisi PV, Callam MJ. Type of incision for below knee amputation (Cochrane review). The Cochrane. Library. 2004;1

    Google Scholar 

  31. Schnur D, Meier RH. Amputation surgery. Physical Medicine and Rehabilitation Clinics. 2014;25(1):35–43.

    PubMed  Google Scholar 

  32. Bowyer G. Debridement of extremity war wounds. JAAOS-Journal of the American Academy of Orthopaedic Surgeons 2006 Oc;14(10):S52–S56.

    Google Scholar 

  33. Bluman EM, Hills C, Keeling JJ, Hsu JR. Augmented subatmospheric wound dressings (SAWDA): technique tip. Foot Ankle Int. 2009 Jan;30(1):62–4.

    Article  PubMed  Google Scholar 

  34. Khan MA, Javed AA, Rao DJ, Corner JA, Rosenfield P. Pediatric traumatic limb amputation: the principles of management and optimal residual limb lengths. World J Plast Surg. 2016;5(1):7–14.

    PubMed  PubMed Central  Google Scholar 

  35. Brown KV, Henman P, Stapley S, Clasper JC. Limb salvage of severely injured extremities after military wounds. J R Army Med Corps. 2011;157(3 Suppl 1):S315–23.

    Article  CAS  PubMed  Google Scholar 

  36. Lambert CN. Amputation surgery in the child. Orthop Clin North Am. 1972;3(2):473–82.

    Article  CAS  PubMed  Google Scholar 

  37. Stewart DG Jr, Kay RM, Skaggs DL. Open fractures in children. Principles of evaluation and management. J Bone Joint Surg Am. 2005;87(12):2784–98.

    Article  PubMed  Google Scholar 

  38. Homann HH, Lehnhardt M, Langer S, Steinau HU. Stump retention and extension on the lower extremity. Chirurg. 2007;78(4):308–15.

    Article  PubMed  Google Scholar 

  39. Kneser U, Leffler M, Bach AD, Kopp J, Horch RE. Vacuum assisted closure (V.a.C.) therapy is an essential tool for treatment of complex defect injuries of the upper extremity. Zentralbl Chir. 2006;131(Suppl 1):S7–12.

    Article  PubMed  Google Scholar 

  40. Harrison DK, Hawthorn IE. Amputation level viability in critical limb ischaemia: setting new standards. Adv Exp Med Biol. 2005;566:325–31.

    Article  PubMed  Google Scholar 

  41. Davids JR, Meyer LC, Blackhurst DW. Operative treatment of bone overgrowth in children who have an acquired or congenital amputation. J Bone Joint Surg Am. 1995;77(10):1490–7.

    Article  CAS  PubMed  Google Scholar 

  42. Kent T, Yi C, Livermore M, Stahel PF. Skin grafts provide durable end-bearing coverage for lower-extremity amputations with critical soft tissue loss. Orthopedics. 2013;36(2):132–5.

    Article  PubMed  Google Scholar 

  43. Vocke AK, Schmid A. Osseous overgrowth after post-traumatic amputation of the lower extremity in childhood. Arch Orthop Trauma Surg. 2000;120(7–8):452–4.

    Article  CAS  PubMed  Google Scholar 

  44. Potter BK, Burns TC, Lacap AP, Granville RR, Gajewski DA. Heterotopic ossification following traumatic and combat-related amputations. Prevalence, risk factors, and preliminary results of excision. J Bone Joint Surg Am. 2007;89(3):476–86.

    Article  PubMed  Google Scholar 

  45. Bowker H, Michael J. Atlas of limb prosthetics: surgical, prosthetic, and rehabilitation principles. 2nd ed. American Academy of Orthopedic Surgeons; 1992.

    Google Scholar 

  46. Sewell P, Noroozi S, Vinney J, Andrews S. Developments in the trans-tibial prosthetic socket fitting process: a review of past and present research. Prosthetics Orthot Int. 2000;24(2):97–107.

    Article  CAS  Google Scholar 

  47. Agarwal AK. Chapter 8: upper limb prosthesis. In: Essentials of prosthetics and orthotics. Jaypee Brothers Medical Publishers; 2013.

    Chapter  Google Scholar 

  48. Gholizadeh H, Abu Osman NA, Eshraghi A, Ali S, Razak NA. Transtibial prosthesis suspension systems: systematic review of literature. Clin Biomech (Bristol, Avon). 2014;29(1):87–97.

    Article  CAS  PubMed  Google Scholar 

  49. Berge JS, Czerniecki JM, Klute GK. Efficacy of shock-absorbing versus rigid pylons for impact reduction in transtibial amputees based on laboratory, field, and outcome metrics. J Rehabil Res Dev. 2005;42(6):795–808.

    Article  PubMed  Google Scholar 

  50. Agarwal AK. Chapter 6: lower limb prosthesis. In: Essentials of prosthetics and orthotics. Jaypee Brothers Medical Publishers; 2013.

    Chapter  Google Scholar 

  51. Au S, Berniker M, Herr H. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw. 2008;21(4):654–66.

    Article  PubMed  Google Scholar 

  52. Sawicki GS, Ferris DP. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency. J Exp Biol. 2009;212(Pt 1):21–31.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassan Soleiman Abu-Sittah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beaineh, P., Emseih, S., Abu-Sittah, G.S. (2023). War-Related Amputations and Prostheses in the Pediatric Population. In: Abu-Sittah, G.S., Hoballah, J.J. (eds) The War Injured Child. Springer, Cham. https://doi.org/10.1007/978-3-031-28613-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28613-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28612-4

  • Online ISBN: 978-3-031-28613-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics