Skip to main content

Quantitative Analysis and Synthesis of NCSs

  • Chapter
  • First Online:
Network-Based Control of Unmanned Marine Vehicles

Abstract

This chapter is concerned with quantitative analysis and synthesis for an NCS under simultaneous consideration of non-uniformly distributed packet dropouts and interval time-varying sampling periods. A packet dropout separation method is proposed to separate packet dropouts from the lump sum of network-induced delays and packet dropouts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Gao, J. Wu, P. Shi, Robust sampled-data \(H_\infty \) control with stochastic sampling. Automatica 45(7), 1729–1736 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Y.-L. Wang, G.-H. Yang, Output tracking control for networked control systems with time delay and packet dropout. Int. J. Control 81(11), 1709–1719 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Lozano, P. Castillo, P. Garcia, A. Dzul, Robust prediction-based control for unstable delay systems: application to the yaw control of a mini-helicopter. Automatica 40(4), 603–612 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Sala, Computer control under time-varying sampling period: an LMI gridding approach. Automatica 41(12), 2077–2082 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Yue, Q.-L. Han, C. Peng, State feedback controller design of networked control systems. IEEE Trans. Circuits Syst. II: Express Briefs 51(11), 640–644 (2004)

    Google Scholar 

  6. X. Jiang, Q.-L. Han, New stability criteria for linear systems with interval time-varying delay. Automatica 44(10), 2680–2685 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. X. Jiang, Q.-L. Han, S. Liu, A. Xue, A new \(H_\infty \) stabilization criterion for networked control systems. IEEE Trans. Autom. Control 53(4), 1025–1032 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Q.-L. Han, Absolute stability of time-delay systems with sector-bounded nonlinearity. Automatica 41(12), 2171–2176 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Q.-L. Han, A discrete delay decomposition approach to stability of linear retarded and neutral systems. Automatica 45(2), 517–524 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Q.-L. Han, Improved stability criteria and controller design for linear neutral systems. Automatica 45(8), 1948–1952 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Gao, T. Chen, J. Lam, A new delay system approach to network-based control. Automatica 44(1), 39–52 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Peng, D. Yue, E. Tian, Z. Gu, A delay distribution based stability analysis and synthesis approach for networked control systems. J. Frankl. Inst. 346(4), 349–365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Yue, Q.-L. Han, J. Lam, Network-based robust \(H_\infty \) control of systems with uncertainty. Automatica 41(6), 999–1007 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. X. Meng, J. Lam, H. Gao, Network-based \(H_\infty \) control for stochastic systems. Int. J. Robust Nonlinear Control 19(3), 295–312 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. X. Jia, D. Zhang, X. Hao, N. Zheng, Fuzzy \(H_\infty \) tracking control for nonlinear networked control systems in T-S fuzzy model. IEEE Trans. Syst. Man Cybern. Part B Cybern. 39(4), 1073–1079 (2009)

    Article  Google Scholar 

  16. Y. Tipsuwan, M.-Y. Chow, Gain scheduler middleware: a methodology to enable existing controllers for networked control and teleoperation-part I: networked control. IEEE Trans. Ind. Electron. 51(6), 1218–1227 (2004)

    Article  Google Scholar 

  17. D. Yue, E. Tian, Z. Wang, J. Lam, Stabilization of systems with probabilistic interval input delays and its applications to networked control systems. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 39(4), 939–945 (2009)

    Article  Google Scholar 

  18. Y.-L. Wang, Q.-L. Han, Quantitative analysis and synthesis for networked control systems with non-uniformly distributed packet dropouts and interval time-varying sampling periods. Int. J. Robust Nonlinear Control 25(2), 282–300 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. X.-M. Zhang, Q.-L. Han, B.-L. Zhang, An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems. IEEE Trans. Ind. Inf. 13(1), 4–16 (2017)

    Article  MathSciNet  Google Scholar 

  20. X.-M. Zhang, Q.-L. Han, X. Yu, Survey on recent advances in networked control systems. IEEE Trans. Ind. Inf. 12(5), 1740–1752 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Long Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, YL., Han, QL., Peng, C., Ma, L. (2023). Quantitative Analysis and Synthesis of NCSs. In: Network-Based Control of Unmanned Marine Vehicles. Springer, Cham. https://doi.org/10.1007/978-3-031-28605-6_2

Download citation

Publish with us

Policies and ethics