Skip to main content

FC Portugal: RoboCup 2022 3D Simulation League and Technical Challenge Champions

  • Conference paper
  • First Online:
RoboCup 2022: Robot World Cup XXV (RoboCup 2022)

Abstract

FC Portugal, a team from the universities of Porto and Aveiro, won the main competition of the 2022 RoboCup 3D Simulation League, with 17 wins, 1 tie and no losses. During the course of the competition, the team scored 84 goals while conceding only 2. FC Portugal also won the 2022 RoboCup 3D Simulation League Technical Challenge, accumulating the maximum amount of points by ending first in its both events: the Free/Scientific Challenge, and the Fat Proxy Challenge. The team presented in this year’s competition was rebuilt from the ground up since the last RoboCup. No previous code was used or adapted, with the exception of the 6D pose estimation algorithm, and the get-up behaviors, which were re-optimized. This paper describes the team’s new architecture and development approach. Key strategy elements include team coordination, role management, formation, communication, skill management and path planning. New lower-level skills were based on a deterministic analytic model and a shallow neural network that learned residual dynamics through reinforcement learning. This process, together with an overlapped learning approach, improved seamless transitions, learning time, and the behavior in terms of efficiency and stability. In comparison with the previous team, the omnidirectional walk is more stable and went from 0.70 m/s to 0.90 m/s, the long kick from 15 m to 19 m, and the new close-control dribble reaches up to 1.41 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For previous contributions concerning coaching, visual debugging, team coordination, sim-to-real, optimization algorithms and frameworks please refer to https://tdp.robocup.org/tdp/2022-tdp-fcportugal3d-robocupsoccer-simulation-3d/.

  2. 2.

    The official rules can be found at https://ssim.robocup.org/3d-simulation/3d-rules/.

  3. 3.

    Official results can be found at https://cloud.robocup.org/s/ifX7TDsaHpCFWWH.

References

  1. Abdolmaleki, A., Simões, D., Lau, N., Reis, L.P., Neumann, G.: Learning a humanoid kick with controlled distance. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 45–57. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68792-6_4

    Chapter  Google Scholar 

  2. Abreu, M., Lau, N., Sousa, A., Reis, L.P.: Learning low level skills from scratch for humanoid robot soccer using deep reinforcement learning. In: 2019 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 256–263. IEEE (2019)

    Google Scholar 

  3. Abreu, M., Reis, L.P., Lau, N.: Learning to run faster in a humanoid robot soccer environment through reinforcement learning. In: Chalup, S., Niemueller, T., Suthakorn, J., Williams, M.-A. (eds.) RoboCup 2019. LNCS (LNAI), vol. 11531, pp. 3–15. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35699-6_1

    Chapter  Google Scholar 

  4. Abreu, M., Silva, T., Teixeira, H., Reis, L.P., Lau, N.: 6D localization and kicking for humanoid robotic soccer. J. Intell. Robot. Syst. 102(2), 1–25 (2021)

    Article  Google Scholar 

  5. Amelia, E., et al.: magmaFatProxy (2022). https://github.com/magmaOffenburg/magmaFatProxy

  6. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  7. Kasaei, M., Abreu, M., Lau, N., Pereira, A., Reis, L.P.: Learning hybrid locomotion skills - learn to exploit residual dynamics and modulate model-based gait control. arXiv preprint arXiv:2011.13798 (2020)

  8. Kasaei, M., Abreu, M., Lau, N., Pereira, A., Reis, L.P.: A CPG-based agile and versatile locomotion framework using proximal symmetry loss. arXiv preprint arXiv:2103.00928 (2021)

  9. Kasaei, M., Abreu, M., Lau, N., Pereira, A., Reis, L.P.: Robust biped locomotion using deep reinforcement learning on top of an analytical control approach. Robot. Auton. Syst. 146, 103900 (2021)

    Article  Google Scholar 

  10. Kasaei, S.M., Simões, D., Lau, N., Pereira, A.: A hybrid ZMP-CPG based walk engine for biped robots. In: Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira, C. (eds.) ROBOT 2017. AISC, vol. 694, pp. 743–755. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70836-2_61

    Chapter  Google Scholar 

  11. MacAlpine, P., Liu, B., Macke, W., Wang, C., Stone, P.: UT Austin Villa: RoboCup 2021 3D simulation league competition champions. In: Alami, R., Biswas, J., Cakmak, M., Obst, O. (eds.) RoboCup 2021. LNCS (LNAI), vol. 13132, pp. 314–326. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98682-7_26

    Chapter  Google Scholar 

  12. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  13. Simões, D., Amaro, P., Silva, T., Lau, N., Reis, L.P.: Learning low-level behaviors and high-level strategies in humanoid soccer. In: Silva, M.F., Luís Lima, J., Reis, L.P., Sanfeliu, A., Tardioli, D. (eds.) ROBOT 2019. AISC, vol. 1093, pp. 537–548. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36150-1_44

    Chapter  Google Scholar 

  14. Teixeira, H., Silva, T., Abreu, M., Reis, L.P.: Humanoid robot kick in motion ability for playing robotic soccer. In: 2020 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 34–39. IEEE (2020)

    Google Scholar 

  15. Xu, Y., Vatankhah, H.: SimSpark: an open source robot simulator developed by the RoboCup community. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.) RoboCup 2013. LNCS (LNAI), vol. 8371, pp. 632–639. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44468-9_59

    Chapter  Google Scholar 

Download references

Acknowledgment

The first author is supported by FCT—Foundation for Science and Technology under grant SFRH/BD/139926/2018. The work was also partially funded by COMPETE 2020 and FCT, under projects UIDB/00027/2020 (LIACC) and UIDB/00127/2020 (IEETA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Abreu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abreu, M., Kasaei, M., Reis, L.P., Lau, N. (2023). FC Portugal: RoboCup 2022 3D Simulation League and Technical Challenge Champions. In: Eguchi, A., Lau, N., Paetzel-Prüsmann, M., Wanichanon, T. (eds) RoboCup 2022: Robot World Cup XXV. RoboCup 2022. Lecture Notes in Computer Science(), vol 13561. Springer, Cham. https://doi.org/10.1007/978-3-031-28469-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28469-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28468-7

  • Online ISBN: 978-3-031-28469-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics