Skip to main content

Omnidirectional Mobile Manipulator LeoBot for Industrial Environments, Developed for Research and Teaching

  • Conference paper
  • First Online:
RoboCup 2022: Robot World Cup XXV (RoboCup 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13561))

Included in the following conference series:

  • 427 Accesses

Abstract

This paper presents the approach of the RoboCup@Work team tyrolics of the university of Innsbruck to design, develop and build a mobile manipulator with 10 degrees of freedom. The mobile manipulator LeoBot uses Mecanum wheels to enable omnidirectional movement and includes a Franka Emika Panda serial manipulator. This paper focuses on hardware development and provides information on mechanical, electronic, and mechatronic system components. Basic algorithms developed and used for the competition are briefly described.

Supported by the University of Innsbruck and the “Foerderkreis 1669 – Wissenschaft Gesellschaft”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    RoboCup@Work rulebook 2022, https://github.com/robocup-at-work/rulebook.

  2. 2.

    Exudyn is a C++ based Python library for efficient simulation of flexible multibody dynamics systems,https://github.com/jgerstmayr/EXUDYN.

  3. 3.

    Maxon a provider of highprecision drive systems, www.maxongroup.com, Motor: EC-i30, 539487, Gear: GP32C, 166938, Encoder: ENC16RIO4096.

  4. 4.

    WAGO, Electronic Interconnections, Interface Electronic and Automation Technology, www.wago.com.

  5. 5.

    Team GIT repository https://github.com/leobot-UIBK/LeoBotRoboCup.

  6. 6.

    https://www.ros.org/.

  7. 7.

    rViz, 3D visualizer for ROS.

  8. 8.

    Robotics simulator CoppeliaSim, www.coppeliarobotics.com/.

  9. 9.

    https://www.orocos.org/wiki/Kinematic_and_Dynamic_Solvers.html.

References

  1. Sereinig, M., Werth, W., Faller, L.-M.: A review of the challenges in mobile manipulation: systems design and RoboCup challenges. e & i Elektrotechnik und Informationstechnik 137(6), 297–308 (2020). https://doi.org/10.1007/s00502-020-00823-8

  2. Kraetzschmar, G.K., et al.: RoboCup@Work: competing for the factory of the future. In: Bianchi, R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS (LNAI), vol. 8992, pp. 171–182. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18615-3_14

    Chapter  Google Scholar 

  3. Zwölfer, A., Gerstmayr, J.: The nodal-based floating frame of reference formulation with modal reduction. Acta Mech. 232(3), 835–851 (2020). https://doi.org/10.1007/s00707-020-02886-2

    Article  Google Scholar 

  4. Manzl, P.: Realtime Movement of a Mecanum Wheeled Robot using the Robot Operating System ROS. Master thesis, University of Innsbruck (2020)

    Google Scholar 

  5. Manzl, P., Gerstmayr, J.: An improved dynamic model of the mecanum wheel for multibody simulations. In: IDETC/CIE, vol. 85468, p. V009T09A031. American Society of Mechanical Engineers (2021). https://doi.org/10.1115/DETC2021-70281

  6. Mott, R.: Machine Elements in Mechanical Design. Pearson/Prentice Hall, Hoboken (2004)

    Google Scholar 

  7. Gfrerrer, A.: Geometry and kinematics of the Mecanum wheel. Comput. Aided Geom. Des. 25(9), 784–791 (2008). https://doi.org/10.1016/j.cagd.2008.07.008

    Article  MathSciNet  Google Scholar 

  8. Manzl, P., Sereinig, M., Gerstmayr, J.: Modellierung und experimentelle Validierung von Mecanumrädern. 8. IFToMM D-A-CH Konferenz 2022 (2022). https://doi.org/10.17185/duepublico/75419

  9. Bodner, M.: Vermessung und Simulation eines Mecanumrades. Master thesis, University of Innsbruck (2021)

    Google Scholar 

  10. Gaz, C., Cognetti, M., Oliva, A., Giordano, P.R., De Luca, A.: Dynamic identification of the franka emika panda robot with retrieval of feasible parameters using penalty-based optimization. IEEE Rob. Autom. Lett. 4(4), 4147–4154 (2019). https://doi.org/10.1109/LRA.2019.2931248

    Article  Google Scholar 

  11. Schöffthaler, F.: Autonomous navigation of a mobile platform in simulation and real-world applications using ROS. Bachelor thesis, University of Innsbruck (2021)

    Google Scholar 

  12. Coleman David, T.: Reducing the barrier to entry of complex robotic software: a moveit! case study (2014). https://doi.org/10.48550/ARXIV.1404.3785

  13. Beeson, P., Ames, B.: TRAC-IK: an open-source library for improved solving of generic inverse kinematics. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pp. 928–935. IEEE (2015). https://doi.org/10.1109/HUMANOIDS.2015.7363472

  14. Rösmann, C., et al.: Trajectory modification considering dynamic constraints of autonomous robots. In: ROBOTIK 2012; 7th German Conference on Robotics, pp. 1–6. VDE (2012)

    Google Scholar 

  15. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91

  16. Cashmore, M., et al.: Rosplan: planning in the robot operating system. Proc. Int. Conf. Autom. Plan. Sched. 25(1), 333–341 (2015)

    Google Scholar 

  17. Sereinig, M., Manzl, P., Gerstmayr, J.: Komfortzone mobiler Manipulatoren. Sechste IFToMM D-A-CH Konferenz 2020 (2020). https://doi.org/10.17185/duepublico/71180

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Sereinig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sereinig, M., Manzl, P., Hofmann, P., Neurauter, R., Pieber, M., Gerstmayr, J. (2023). Omnidirectional Mobile Manipulator LeoBot for Industrial Environments, Developed for Research and Teaching. In: Eguchi, A., Lau, N., Paetzel-Prüsmann, M., Wanichanon, T. (eds) RoboCup 2022: Robot World Cup XXV. RoboCup 2022. Lecture Notes in Computer Science(), vol 13561. Springer, Cham. https://doi.org/10.1007/978-3-031-28469-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28469-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28468-7

  • Online ISBN: 978-3-031-28469-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics