Skip to main content

Application of LPWAN Technologies Based on LoRa in the Monitoring of Water Sources of The Andean Wetlands

  • Conference paper
  • First Online:
Smart Cities ( ICSC-CITIES 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1706))

Included in the following conference series:

Abstract

This paper presents the design of a water source monitoring system based on LoRa technology for the Tres Lagunas Andean high-altitude wetlands ecosystem (Ecuador). The solution has been implemented using mainly an ATmega1284p microcontroller, an SX1278 transceiver and hydrological sensors. The data is transmitted from the study site to the TTN server and sent via the MQTT protocol to the Node-RED platform. On the other hand, a graphical interface has been developed that allows analyzing historical data of temperature, dissolved oxygen (DO), oxidation-reduction potential (ORP) and hydrogen potential (pH). Furthermore, energy consumption tests and LoRa physical layer experiments have been performed with the prototype. Results reveal the proper operation of the prototype. In particular, it has been observed that SF9 and SF10 present packet reception rates higher than 97%. Regarding SF7 and SF8, they was discarded for this type of scenarios due to the packet loss rate higher than 10%. The main contribution of this work is the proposal of a portable, low-cost and open source prototype, focused on the transmission of hydrological data obtained in Andean high-altitude lakes through IoT technologies for the administration, management and control of water resources that represent a fundamental component of a smart city.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellini, P., Nesi, P., Pantaleo, G.: IoT-enabled smart cities: a review of concepts, frameworks and key technologies. Appl. Sci. 12(3), 1607 (2022)

    Article  Google Scholar 

  2. Li, C., Su, Y., Yuan, R., Chu, D., Zhu, J.: Light-weight spliced convolution network-based automatic water meter reading in smart city. IEEE Access 7, 174359–174367 (2019)

    Article  Google Scholar 

  3. Li, X.J., Chong, P.H.J.: Design and implementation of a self-powered smart water meter. Sensors 19(19), 4177 (2019)

    Article  Google Scholar 

  4. Ramírez-Moreno, M.A., et al.: Sensors for sustainable smart cities: a review. Appl. Sci. 11(17), 8198 (2021)

    Article  Google Scholar 

  5. León Ortiz, P.: Influencia del calentamiento global en los ecosistemas terrestres del perú (2021)

    Google Scholar 

  6. Castro, M.: Proyecto “creación de capacidades para la valoración socioeconómica de los humedales altoandinos”: Una valoración económica del almacenamiento de agua y carbono en los bofedales de los páramos ecuatorianos (2011)

    Google Scholar 

  7. Briceño Salas, J.P.: Percepción de los cambios ambientales en los humedales de Oña-Saraguro. Ph.D. thesis, Universidad Técnica Particular De Loja (2014)

    Google Scholar 

  8. Ahmed, U., Mumtaz, R., Anwar, H., Shah, A.A., Irfan, R., García-Nieto, J.: Efficient water quality prediction using supervised machine learning. Water 11(11), 2210 (2019)

    Article  Google Scholar 

  9. Mao, F., et al.: Moving beyond the technology: a socio-technical roadmap for low-cost water sensor network applications. Environ. Sci. Technol. 54(15), 9145–9158 (2020)

    Article  Google Scholar 

  10. Pieters, O., et al.: MIRRA: a modular and cost-effective microclimate monitoring system for real-time remote applications. Sensors 21(13), 4615 (2021)

    Article  Google Scholar 

  11. Wild, J., et al.: Climate at ecologically relevant scales: a new temperature and soil moisture logger for long-term microclimate measurement. Agric. Forest Meteorol. 268, 40–47 (2019)

    Article  Google Scholar 

  12. Méndez-Barroso, L.A., Rivas-Márquez, J.A., Sosa-Tinoco, I., Robles-Morúa, A.: Design and implementation of a low-cost multiparameter probe to evaluate the temporal variations of water quality conditions on an estuarine lagoon system. Environ. Monit. Assess. 192(11), 1–18 (2020). https://doi.org/10.1007/s10661-020-08677-5

    Article  Google Scholar 

  13. Menon, G.S., Ramesh, M.V., Divya, P.: A low cost wireless sensor network for water quality monitoring in natural water bodies. In: 2017 IEEE Global Humanitarian Technology Conference (GHTC), pp. 1–8. IEEE (2017)

    Google Scholar 

  14. Moya Quimbita, M.A.: Evaluación de pasarela lora/lorawan en entornos urbanos (2018)

    Google Scholar 

  15. Kimothi, S., et al.: Intelligent energy and ecosystem for real-time monitoring of glaciers. Comput. Electric. Eng. 102, 108163 (2022)

    Article  Google Scholar 

  16. Kombo, O.H., Kumaran, S., Bovim, A.: Design and application of a low-cost, low-power, LoRa-GSM, IoT enabled system for monitoring of groundwater resources with energy harvesting integration. IEEE Access 9, 128417–128433 (2021)

    Article  Google Scholar 

  17. Bathre, M., Das, P.K.: Water supply monitoring system with self-powered LoRa based wireless sensor system powered by solar and hydroelectric energy harvester. Comput. Stand. Interf. 82, 103630 (2022)

    Article  Google Scholar 

  18. Bor, M., Roedig, U.: Lora transmission parameter selection. In: 2017 13th International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 27–34. IEEE (2017)

    Google Scholar 

  19. Ko, S., et al.: Lora network performance comparison between open area and tree farm based on PHY factors. In: 2018 IEEE Sensors Applications Symposium (SAS), pp. 1–6. IEEE (2018)

    Google Scholar 

  20. Cattani, M., Boano, C.A., Römer, K.: An experimental evaluation of the reliability of LoRa long-range low-power wireless communication. J. Sens. Actuator Netw. 6(2), 7 (2017)

    Article  Google Scholar 

  21. Lopez Chalacan, V.H.: Performance evaluation of long range (LoRa) wireless Rf technology for the internet of things (IoT) using Dragino LoRa at 915 Mhz (2020)

    Google Scholar 

  22. Iova, O., et al.: Lora from the city to the mountains: exploration of hardware and environmental factors. In: Proceedings of the 2017 International Conference on Embedded Wireless Systems and Networks (2017)

    Google Scholar 

  23. Zhang, Z., Zhang, B., Zhang, X.: Performance research of LoRa at high transmission rate. In: Journal of Physics: Conference Series, vol. 1544, p. 012177. IOP Publishing (2020)

    Google Scholar 

  24. Microchip: ATmega1284P. http://www.microchip.com/en-us/product/ATmega1284P. Accessed 18 Jun 2022

  25. Atlas-Scientific: Gravity\(^{\rm TM}\) pH. http://www.atlas-scientific.com/kits/gravity-analog-ph-kit/. Accessed 10 Sept 2022

  26. Atlas-Scientific: Gravity\(^{\rm TM}\) DO Sensor. http://www.atlas-scientific.com/kits/gravity-analog-do-kit/. Accessed 10 Sept 2022

  27. Atlas-Scientific: Gravity\(^{\rm TM}\) ORP Sensor. http://www.atlas-scientific.com/kits/gravity-analog-orp-kit/. Accessed 10 Sept 2022

  28. Atlas-Scientific: Gravity Analog Sensor/Meter Sample Code. http://www.files.atlas-scientific.com/atlas_gravity.zip. Accessed 10 Sep 2022

  29. Ai-Thinker: Módulo LoRa SX1278 433 Mhz. http://www.docs.ai-thinker.com/en/lora/man. Accessed 10 Sept 2022

  30. Github: User-friendly library for using arduino-lmic with The Things Network and other LoRaWAN® networks. http://www.github.com/mcci-catena/arduino-lorawan. Accessed 18 Sept 2022

  31. Arduino IDE. http://www.arduino.cc/en/software. Accessed 10 Sept 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

González, L., Gonzales, A., González, S., Cartuche, A. (2023). Application of LPWAN Technologies Based on LoRa in the Monitoring of Water Sources of The Andean Wetlands. In: Nesmachnow, S., Hernández Callejo, L. (eds) Smart Cities. ICSC-CITIES 2022. Communications in Computer and Information Science, vol 1706. Springer, Cham. https://doi.org/10.1007/978-3-031-28454-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28454-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28453-3

  • Online ISBN: 978-3-031-28454-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics