Skip to main content

Exploring IoT Networks

  • Chapter
  • First Online:
Practical Internet of Things Networking
  • 349 Accesses

Abstract

The layered architecture also applies to IoT architectures. This chapter introduces the two main networking families that exist in the context of IoT architectures. Understating these families is very important because these layers will be deployed in hands-on scenarios later in this book. Specifically, this chapter explores relevant physical and link layers associated with these families. In addition, the chapter also addresses the importance of IPv6 adaptation and how it relates to the underlying protocols. Finally, the chapter explores two main technologies that provide session management and enable the interaction between devices and application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Herrero, R.: Fundamentals of IoT Communication Technologies. Textbooks in Telecommunication Engineering. Springer, Berlin (2021). https://books.google.com/books?id=k70rzgEACAAJ

    Google Scholar 

  2. Telecommunication Standardization Sector of ITU: ITU-T G.9959: short range narrow-band digital radiocommunication transceivers—PHY, MAC, SAR and LLC layer specifications. Tech. rep., International Telecommunication Union (2015)

    Google Scholar 

  3. Al-Sarawi, S., Anbar, M., Alieyan, K., Alzubaidi, M.: Internet of Things (IoT) communication protocols: review. In: 2017 8th International Conference on Information Technology (ICIT), pp. 685–690 (2017)

    Google Scholar 

  4. Farrell, S.: Low-Power Wide Area Network (LPWAN) Overview. RFC 8376 (2018). https://doi.org/10.17487/RFC8376. https://rfc-editor.org/rfc/rfc8376.txt

  5. Ferré, G., Simon, E.P.: An introduction to Sigfox and LoRa PHY and MAC layers (2018). https://hal.archives-ouvertes.fr/hal-01774080. Working paper or preprint

  6. Mroue, H., Nasser, A., Hamrioui, S.: MAC layer-based evaluation of IoT technologies: LoRa, SigFox and NB-IoT (2018). https://doi.org/10.1109/MENACOMM.2018.8371016

  7. Raza, U., Kulkarni, P., Sooriyabandara, M.: Low power wide area networks: an overview (2016)

    Google Scholar 

  8. Weyn, M., Ergeerts, G., Berkvens, R., Wojciechowski, B., Tabakov, Y.: DASH7 alliance protocol 1.0: low-power, mid-range sensor and actuator communication (2015)

    Google Scholar 

  9. Ayoub, W., Nouvel, F., Samhat, A.E., Prévotet, J.C., Mroue, M.: Overview and measurement of mobility in DASH7. In: 2018 25th International Conference on Telecommunications (ICT), pp. 532–536. IEEE, St. Malo, France (2018). https://doi.org/10.1109/ICT.2018.8464846

  10. Ayoub, W., Samhat, A.E., Nouvel, F., Mroue, M., Prevotet, J.: Internet of mobile things: overview of LoRaWAN, DASH7, and NB-IoT in LPWANs standards and supported mobility. IEEE Commun. Surv. Tutorials 21(2), 1561–1581 (2019)

    Article  Google Scholar 

  11. Webb, W.: Weightless: The technology to finally realise the M2M vision. Int. J. Interdiscip. Telecommun. Netw. 4, 30–37 (2012). https://doi.org/10.4018/jitn.2012040102

    Google Scholar 

  12. Oliveira, L., Rodrigues, J., Kozlov, S., Rabelo, R., Albuquerque, V.: MAC layer protocols for Internet of Things: a survey. Future Internet 11, 16 (2019). https://doi.org/10.3390/fi11010016

    Article  Google Scholar 

  13. Chaudhari, B., Zennaro, M., Borkar, S.: LPWAN technologies: emerging application characteristics, requirements, and design considerations. Future Internet 12, 46 (2020). https://doi.org/10.3390/fi12030046

    Article  Google Scholar 

  14. Foubert, B., Mitton, N.: Long-range wireless radio technologies: a survey. Future Internet 12, 13 (2020). https://doi.org/10.3390/fi12010013

    Article  Google Scholar 

  15. Calvo, I., Gil-Garcia, J., Recio, I., Lopez, A., Quesada, J.: Building IoT applications with raspberry pi and low power IQRF communication modules. Electronics 5, 54 (2016). https://doi.org/10.3390/electronics5030054

    Article  Google Scholar 

  16. Finnegan, J., Brown, S.: A comparative survey of LPWA networking (2018)

    Google Scholar 

  17. Naik, N.: LPWAN technologies for IoT systems: Choice between ultra narrow band and spread spectrum. In: 2018 IEEE International Systems Engineering Symposium (ISSE), pp. 1–8 (2018)

    Google Scholar 

  18. Walden, M.C., Jackson, T., Gibson, W.H.: Development of an empirical path-loss model for street-light telemetry at 868 and 915 MHz. In: 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), pp. 3389–3392 (2011)

    Google Scholar 

  19. Saifullah, A., Rahman, M., Ismail, D., Lu, C., Liu, J., Chandra, R.: Low-power wide-area network over white spaces. IEEE/ACM Trans. Netw. 26(4), 1893–1906 (2018). https://doi.org/10.1109/TNET.2018.2856197

    Article  Google Scholar 

  20. Saifullah, A., Rahman, M., Ismail, D., Lu, C., Chandra, R., Liu, J.: Snow: sensor network over white spaces, pp. 272–285 (2016). https://doi.org/10.1145/2994551.2994552

  21. Saifullah, A., Rahman, M., Ismail, D., Lu, C., Liu, J., Chandra, R.: Enabling reliable, asynchronous, and bidirectional communication in sensor networks over white spaces. In: Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems, SenSys ’17. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3131672.3131676

  22. Roth, Y., Dore, J.B., Ros, L., Berg, V.: A comparison of physical layers for low power wide area networks, pp. 261–272 (2016). https://doi.org/10.1007/978-3-319-40352-6_21

  23. IEEE standard for local and metropolitan area networks- part 15.4: low-rate wireless personal area networks (LR-WPANS)-amendment 5: Physical layer specifications for low energy, critical infrastructure monitoring networks. IEEE Std 802.15.4k-2013 (Amendment to IEEE Std 802.15.4-2011 as amended by IEEE Std 802.15.4e-2012, IEEE Std 802.15.4f-2012, IEEE Std 802.15.4g-2012, and IEEE Std 802.15.4j-2013), pp. 1–149 (2013)

    Google Scholar 

  24. Righetti, F., Vallati, C., Comola, D., Anastasi, G.: Performance measurements of IEEE 802.15.4g wireless networks. In: 2019 IEEE 20th International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), pp. 1–6 (2019)

    Google Scholar 

  25. Harada, H., Mizutani, K., FUJIWARA, J., MOCHIZUKI, K., OBATA, K., Okumura, R.: IEEE 802.15.4g based WI-SUN communication systems. IEICE Trans. Commun. E100.B (2017). https://doi.org/10.1587/transcom.2016SCI0002

  26. IEEE standard for local and metropolitan area networks—part 15.4: low-rate wireless personal area networks (LR-WPANS) amendment 3: physical layer (PHY) specifications for low-data-rate, wireless, smart metering utility networks. IEEE Std 802.15.4g-2012 (Amendment to IEEE Std 802.15.4-2011), pp. 1–252 (2012)

    Google Scholar 

  27. 3GPP: 3GPP release 13 (2015). https://www.3gpp.org/release-13

  28. Silva, P., Kaseva, V., Lohan, E.S.: Wireless positioning in IoT: a look at current and future trends. Sensors 18, 2470 (2018). https://doi.org/10.3390/s18082470

    Article  Google Scholar 

  29. IEEE standard for low-rate wireless networks. IEEE Std 802.15.4-2020 (Revision of IEEE Std 802.15.4-2015), pp. 1–800 (2020)

    Google Scholar 

  30. ZigBee Specification. Standard, The ZigBee Alliance, USA (2015)

    Google Scholar 

  31. ANSI/ISA-100.11a-2011 Wireless Systems for Industrial Automation: Process Control and Related Applications. Standard, International Society of Automation, USA (2011)

    Google Scholar 

  32. IEC 62591:2016 Industrial networks—Wireless communication network and communication profiles—WirelessHART. Standard, International Electrotechnical Commission, Switzerland (2016)

    Google Scholar 

  33. IEEE standard for local and metropolitan area networks—part 15.4: low-rate wireless personal area networks (LR-WPANS) amendment 1: MAC sublayer. IEEE Std 802.15.4e-2012 (Amendment to IEEE Std 802.15.4-2011), pp. 1–225 (2012)

    Google Scholar 

  34. Bluetooth, S.: Bluetooth 5.2 Core Specification, p. 3256 (2019)

    Google Scholar 

  35. Gupta, N.: Inside Bluetooth Low Energy. Artech House mobile communications series. Artech House (2016). https://books.google.com/books?id=hRoQkAEACAAJ

  36. Cominelli, M., Patras, P., Gringoli, F.: Dead on arrival: an empirical study of the Bluetooth 5.1 positioning system. In: Proceedings of the 13th International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization, pp. 13–20 (2019)

    Google Scholar 

  37. IEEE Standard for Information Technology—local and metropolitan area networks—specific requirements—part 15.1a: wireless medium access control (MAC) and physical layer (PHY) specifications for wireless personal area networks (WPAN). IEEE Std 802.15.1-2005 (Revision of IEEE Std 802.15.1-2002), pp. 1–700 (2005)

    Google Scholar 

  38. Lavric, A., Popa, V.: Internet of things and LoRa low-power wide-area networks: a survey. In: 2017 International Symposium on Signals, Circuits and Systems (ISSCS), pp. 1–5 (2017)

    Google Scholar 

  39. Shanmuga Sundaram, J.P., Du, W., Zhao, Z.: A survey on LoRa networking: research problems, current solutions, and open issues. IEEE Commun. Surv. Tutorials 22(1), 371–388 (2020)

    Article  Google Scholar 

  40. Saari, M., bin Baharudin, A.M., Sillberg, P., Hyrynsalmi, S., Yan, W.: LoRa—a survey of recent research trends. In: 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 0872–0877 (2018)

    Google Scholar 

  41. Augustin, A., Yi, J., Clausen, T., Townsley, W.M.: A study of lora: Long range & low power networks for the internet of things. Sensors (Basel, Switzerland) 16(9), 1466 (2016). https://doi.org/10.3390/s16091466. https://pubmed.ncbi.nlm.nih.gov/27618064

  42. Alliance, L.: Lorawan 1.1 specification (2017). https://lora-alliance.org/sites/default/files/2018-04/lorawantm_specification_-v1.1.pdf

  43. Chen, M., Miao, Y., Hao, Y., Hwang, K.: Narrow band Internet of Things. IEEE Access 5, 20557–20577 (2017)

    Article  Google Scholar 

  44. Montenegro, G., Hui, J., Culler, D., Kushalnagar, N.: Transmission of IPv6 Packets over IEEE 802.15.4 Networks. RFC 4944 (2007). https://doi.org/10.17487/RFC4944. https://rfc-editor.org/rfc/rfc4944.txt

  45. Belshe, M., Peon, R., Thomson, M.: Hypertext Transfer Protocol Version 2 (HTTP/2). RFC 7540 (2015). https://doi.org/10.17487/RFC7540. https://rfc-editor.org/rfc/rfc7540.txt

  46. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.: RFC 2616, hypertext transfer protocol—http/1.1 (1999). http://www.rfc.net/rfc2616.html

  47. Thubert, P., Hui, J.: Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks. RFC 6282 (2011). https://doi.org/10.17487/RFC6282https://rfc-editor.org/rfc/rfc6282.txt

  48. Vilajosana, X., Watteyne, T., Chang, T., Vučinić, M., Duquennoy, S., Thubert, P.: IETF 6TISCH: a tutorial. IEEE Commun. Surv. Tutorials 22(1), 595–615 (2020)

    Article  Google Scholar 

  49. Gomez, C., Paradells, J., Bormann, C., Crowcroft, J.: From 6LoWPAN to 6Lo: expanding the universe of IPv6-supported technologies for the Internet of Things. IEEE Commun. Mag. 55 (2017). https://doi.org/10.1109/MCOM.2017.1600534

  50. Brandt, A., Buron, J.: Transmission of IPv6 Packets over ITU-T G.9959 Networks. RFC 7428 (2015). https://doi.org/10.17487/RFC7428. https://rfc-editor.org/rfc/rfc7428.txt

  51. Lynn, K., Martocci, J., Neilson, C., Donaldson, S.: Transmission of IPv6 over Master-Slave/Token-Passing (MS/TP) Networks. RFC 8163 (2017). https://doi.org/10.17487/RFC8163. https://rfc-editor.org/rfc/rfc8163.txt

  52. Ikpehai, A., Adebisi, B.: 6LoPLC for smart grid applications. In: 2015 IEEE International Symposium on Power Line Communications and Its Applications (ISPLC), pp. 211–215 (2015)

    Google Scholar 

  53. Mariager, P.B., Petersen, J.T., Shelby, Z., van de Logt, M., Barthel, D.: Transmission of IPv6 Packets over Digital Enhanced Cordless Telecommunications (DECT) Ultra Low Energy (ULE). RFC 8105 (2017). https://doi.org/10.17487/RFC8105. https://rfc-editor.org/rfc/rfc8105.txt

  54. Nieminen, J., Savolainen, T., Isomaki, M., Patil, B., Shelby, Z., Gomez, C.: IPv6 over BLUETOOTH(R) Low Energy. RFC 7668 (2015). https://doi.org/10.17487/RFC7668. https://rfc-editor.org/rfc/rfc7668.txt

  55. Shelby, Z., Hartke, K., Bormann, C.: The Constrained Application Protocol (CoAP). RFC 7252 (2014). https://doi.org/10.17487/RFC7252. https://rfc-editor.org/rfc/rfc7252.txt

  56. Bormann, C., Lemay, S., Tschofenig, H., Hartke, K., Silverajan, B., Raymor, B.: CoAP (Constrained Application Protocol) over TCP, TLS, and WebSockets. RFC 8323 (2018). https://doi.org/10.17487/RFC8323. https://rfc-editor.org/rfc/rfc8323.txt

  57. Bormann, C., Shelby, Z.: Block-Wise Transfers in the Constrained Application Protocol (CoAP). RFC 7959 (2016). https://doi.org/10.17487/RFC7959. https://rfc-editor.org/rfc/rfc7959.txt

  58. Hartke, K.: Observing Resources in the Constrained Application Protocol (CoAP). RFC 7641 (2015). https://doi.org/10.17487/RFC7641. https://rfc-editor.org/rfc/rfc7641.txt

  59. Tschofenig, H., Fossati, T.: Transport Layer Security (TLS) / Datagram Transport Layer Security (DTLS) Profiles for the Internet of Things. RFC 7925 (2016). https://doi.org/10.17487/RFC7925. https://rfc-editor.org/rfc/rfc7925.txt

  60. Andrew Banks Ed Briggs, K.B., Gupta, R.: Mqtt version 3.1.1 oasis committee specification (2014). http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

  61. Hunkeler, U., Truong, H.L., Stanford-Clark, A.: MQTT-SN—a publish/subscribe protocol for wireless sensor networks. In: 2008 3rd International Conference on Communication Systems Software and Middleware and Workshops (COMSWARE ’08), pp. 791–798 (2008)

    Google Scholar 

  62. Banks, A., Gupta, R.: Mqtt version 5.0 oasis committee specification (2019). https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herrero, R. (2023). Exploring IoT Networks. In: Practical Internet of Things Networking. Springer, Cham. https://doi.org/10.1007/978-3-031-28443-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28443-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28442-7

  • Online ISBN: 978-3-031-28443-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics