Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 83 Accesses

Abstract

This chapter addresses parts of the first objective. It starts with a state of the art review of the available tools used for expansion planning, presents study cases of Faroe Islands and other systems, both energy resources and expansion planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    European Union.

  2. 2.

    Small Island Developing States as defined by the United Nations Educational, Scientific and Cultural Organization (UNESCO).

References

  1. Van Beeck NMJP (1999) Classification of energy models. FEW Research Memorandum, Operations research, Tilburg

    Google Scholar 

  2. Jebaraj S, Iniyan S (2006) A review of energy models. Renew Sustain Energy Rev 10(4):281–311. https://doi.org/10.1016/j.rser.2004.09.004

    Article  Google Scholar 

  3. Urban F, Benders RM, Moll HC (2007) Modelling energy systems for developing countries. Energy Policy 35(6):3473–3482. https://doi.org/10.1016/j.enpol.2006.12.025

    Article  Google Scholar 

  4. Connolly D, Lund H, Mathiesen BV, Leahy M (2010) A review of computer tools for analysing the integration of renewable energy into various energy systems. Appl Energy 87(4):1059–1082. https://doi.org/10.1016/j.apenergy.2009.09.026

    Article  Google Scholar 

  5. Pfenninger S, Hawkes A, Keirstead J (2014) Energy systems modeling for twenty-first century energy challenges. Renew Sustain Energy Rev 33:74–86. https://doi.org/10.1016/j.rser.2014.02.003

    Article  Google Scholar 

  6. Ringkjøb HK, Haugan PM, Solbrekke IM (2018) A review of modelling tools for energy and electricity systems with large shares of variable renewables. Renew Sustain Energy Rev 96:440–459. https://doi.org/10.1016/j.rser.2018.08.002

    Article  Google Scholar 

  7. Koltsaklis NE, Dagoumas AS (2018) State-of-the-art generation expansion planning: a review. Appl Energy 230:563–589. https://doi.org/10.1016/j.apenergy.2018.08.087

    Article  Google Scholar 

  8. Dagoumas AS, Koltsaklis NE (2019) Review of models for integrating renewable energy in the generation expansion planning. Appl Energy 242:1573–1587. https://doi.org/10.1016/j.apenergy.2019.03.194

    Article  Google Scholar 

  9. Parliament European (2003) Directive 2003/54/EC of the European parliament and of the council of 26 June 2003 concerning common rules for the internal market in electricity and repealing directive 96/92/EC. Official J Eur Union 176:37–55

    Google Scholar 

  10. Energi D (2018) Notat - Funktionel adskillelse af elsystemet pøa Færøerne. Tech Rep d2018-22131-3.0

    Google Scholar 

  11. Department of Sustainable Development of the General Secretariat of the Organization of American States (2013) Antigua and Barbuda draft sustainable energy action plan. Tech Rep, [online]. Available: http://www.scribd.com/doc/197609842/EAP-AntiguaBarbuda-Web

  12. NREL (2015) Energy snapshot Antigua and Barbuda. National Renewable Energy Laboratory, Golden, Colorado [online]. Available: http://www.nrel.gov/docs/fy15osti/64115.pdf (visited on 10/02/2020)

  13. IRENA (2016) Renewables readiness assessment: Antigua & Barbuda. International Renewable Energy Acency (IRENA), ISBN: 9789295111257

    Google Scholar 

  14. IRENA (2018) Country profile Antigua and Barbuda. International Renewable Energy Agency (IRENA), Abu Dhabi [online]. Available: https://islands.irena.org/RE-Progress/Country-Profiles (visited on 10/02/2020)

  15. IRENA (2018) Country profile British Virgin Islands. International Renewable Energy Agency (IRENA), Abu Dhabi [online]. Available: https://islands.irena.org/RE-Progress/Country-Profiles (visited on 10/02/2020)

  16. IRENA (2018) Country profile Cabo Verde. International Renewable Energy Agency (IRENA), Abu Dhabi [online]. Available: https://islands.irena.org/RE-Progress/Country-Profiles (visited on 10/02/2020)

  17. Nordman E, Barrenger A, Crawford J, McLaughlin J, Wilcox C. Options for achieving cape verde’s 100

    Google Scholar 

  18. Díaz AR, Ramos-Real FJ, Marrero GA, Perez Y (2015) Impact of electric vehicles as distributed energy storage in isolated systems: the case of tenerife. Sustainability 7(11):15152–15178. https://doi.org/10.3390/su71115152

    Article  Google Scholar 

  19. Uche-Soria M, Rodríguez-Monroy C (2018) Special regulation of isolated power systems: the Canary Islands, Spain. Sustainability 10(7). https://doi.org/10.3390/su10072572

  20. Energynautics GmbH (2020) Power system in Madeira & Porto Santo [online]. Available: https://hybridpowersystems.org/power-system-madeira-porto-santo/ (visited on 03/17/2022)

  21. da Madeira Electricidade (2017) Mix da oferta do ano 2017 (MWh). Electricidade da Madeira, Funchal, Madeira

    Google Scholar 

  22. Abreu SR, Barreto C, Morgado-Dias F (2012) Renewable energy characterization of Madeira Island. In: 10th Portuguese conference on automatic control, Funchal, Portugal

    Google Scholar 

  23. IRENA (2018) Country profile Maldives. International Renewable Energy Agency (IRENA), Abu Dhabi [online]. Available: https://islands.irena.org/RE-Progress/Country-Profiles (visited on 10/02/2020)

  24. IRENA (2018) Country profile Saint Lucia. International Renewable Energy Agency (IRENA), Abu Dhabi [online]. Available: https://islands.irena.org/RE-Progress/Country-Profiles (visited on 10/02/2020)

  25. Cross-Call DF (2013) Matching energy storage to small island electricity systems: a case study of the Azores, MSc Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts

    Google Scholar 

  26. dos Açores Electricidade (2019) Caracterização das redes de transporte e distribuição de energia elétrica em 2019. Electricidade dos Açores, Ponta Delgada, Açores

    Google Scholar 

  27. IRENA (2018) Country profile Seychelles. International Renewable Energy Agency (IRENA), Abu Dhabi [online]. Available: https://islands.irena.org/RE-Progress/Country-Profiles (visited on 10/02/2020)

  28. Vreden JV, Wigan M, Kruze A, Dyhr-Mikkelsen K, Lindboe HH. Proposal for energy policy of the Republic of Seychelles, 2010–2030. Seychelles Investment Board

    Google Scholar 

  29. EDT, Transition énergétique [online]. Available: https://www.edt.pf/transition-energetique-innovation (visited on 10/02/2020)

  30. NREL (2015) Energy snapshot British Virgin Islands. National Renewable Energy Laboratory, Golden, Colorado [online]. Available: https://www.nrel.gov/docs/fy15osti/62703.pdf (visited on 10/02/2020)

  31. Ferreira PV, Lopes A, Dranka GG, Cunha J. Planning for a 100

    Google Scholar 

  32. Gesto Energia SA (2011) Plano energético renovável Cabo Verde. Tech Rep, Algés, Portugal

    Google Scholar 

  33. Pereira S, Ferreira P, Vaz AI (2016) Optimization modeling to support renewables integration in power systems. Renew Sustain Energy Rev 55:316–325. https://doi.org/10.1016/j.rser.2015.10.116

    Article  Google Scholar 

  34. Gils HC, Simon S. Carbon neutral archipelago-100

    Google Scholar 

  35. Miguel M, Nogueira T, Martins F (2017) Energy storage for renewable energy integration: the case of Madeira Island, Portugal. Energy Proc 136:251–257. https://doi.org/10.1016/j.egypro.2017.10.277

    Article  Google Scholar 

  36. Marczinkowski HM, Barros L. Technical approaches and institutional alignment to 100

    Google Scholar 

  37. IRENA (2015) Renewable energy roadmap for the Republic of Maldives. International Renewable Energy Agency (IRENA) [online]. Available: https://www.irena.org/publications (visited on 03/18/2022)

  38. Liu J, Mei C, Wang H, Shao W, Xiang C (2018) Powering an island system by renewable energy–a feasibility analysis in the Maldives. Appl Energy 227:18–27. https://doi.org/10.1016/j.apenergy.2017.10.019

    Article  Google Scholar 

  39. Bunker K, Doig S, Locke J, Mushegan S, Teelucksingh S, Torbert R (2016) Developing the Saint Lucia energy roadmap. Rocky Mountain Institute [online]. Available: https://rmi.org/wp-content/uploads/2017/03/Islands_Saint_lucia_Energy_Roadmap_Report_2016.pdf

  40. Meza CG, Zuluaga Rodríguez C, D’Aquino CA, Amado NB, Rodrigues A, Sauer IL. Toward a 100

    Google Scholar 

  41. Dui N, Da Graça Carvalho M (2004) Increasing renewable energy sources in island energy supply: case study Porto Santo. Renew Sustain Energy Rev 8(4):383–399. https://doi.org/10.1016/j.rser.2003.11.004

    Article  Google Scholar 

  42. Krajačić G, Duić N, Carvalho MDG (2009) H2RES, Energy planning tool for island energy systems–the case of the Island of Mljet. Int J Hydrogen Energy 34(16):7015–7026. https://doi.org/10.1016/j.ijhydene.2008.12.054

    Article  Google Scholar 

  43. Katsaprakakis DA, Voumvoulakis M. A hybrid power plant towards 100

    Google Scholar 

  44. Maleki A, Askarzadeh A (2014) Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region: a case study of Rafsanjan. Iran. Sustain Energy Technol Assessments 7:147–153. https://doi.org/10.1016/j.seta.2014.04.005

    Article  Google Scholar 

  45. Kuang Y, Zhang Y, Zhou B et al (2016) A review of renewable energy utilization in islands. Renew Sustain Energy Rev 59:504–513. https://doi.org/10.1016/j.rser.2016.01.014

    Article  Google Scholar 

  46. Cappelen J, Laursen EV (1998) The climate of the Faroe Islands–with climatological standard normals, 1961–1990. Tech Rep, Danish Meteorological Institute (DMI), Copenhagen, Denmark

    Google Scholar 

  47. Landsbyggifelagi\(\eth \) P/f (2000) Vatnorka, Yvirlit yvir útbyggingarmøguleikar, Elfelagi\(\eth \) SEV. Tórshavn, Faroe Islands, Tech Rep

    Google Scholar 

  48. Nielsen T. Technical and economic assessment of a 100

    Google Scholar 

  49. Sondell N (2010) Wind energy study for the Faroe Islands. Tech Rep, Storm Weather Center, Oslo, Norway

    Google Scholar 

  50. Simonsen K, Niclasen BA (2021) Analysis of the energy potential of tidal streams on the Faroe Shelf. Renew Energy 163:836–844

    Article  Google Scholar 

  51. Hagerman G, Polagye B (2006) Methodology for estimating tidal current energy resources and power production by tidal in-stream energy conversion (TISEC) devices. Tech Rep, Electric Power Research Institute

    Google Scholar 

  52. Tróndheim HM, Niclasen BA, Nielsen T, da Silva FF, Bak C. 100

    Google Scholar 

  53. Tróndheim HM, Niclasen BA, Nielsen T, Bak CL, da Silva FF. Introduction to the energy mixture in an isolated grid with 100

    Google Scholar 

  54. Tróndheim HM, Nielsen T, Niclasen BA, Bak CL, da Silva FF. The least-cost path to a 100

    Google Scholar 

  55. Katsaprakakis DA, Thomsen B, Dakanali I, Tzirakis K. Faroe Islands: towards 100

    Google Scholar 

  56. Skeibrok AM, Eriksen M, Stav J (2019) Optimized hybrid microgrid system integrated with renewable energy sources, BSc Thesis, University of Adger, Kristiansand, Norway

    Google Scholar 

  57. Burakovskij J, Jacobsen CN, Sagoo RS, Wennerberg C (2012) Fælles nordisk studie om pumped storage. Tech Rep, Grontmij, Stockholm, Sweden

    Google Scholar 

  58. Norconsult AS (2013) Wind power based pumped storage, pre-feasibility study, Su\(\eth \)uroy. Faroe Islands, Tech Rep, Norconsult AS

    Google Scholar 

  59. Buiskikh D, Zakeri B, Syri S, Kauranen P (2018) Economic feasibility of flow batteries in grid-scale applications. In: 2018 15th international conference on the European Energy Market (EEM). https://doi.org/10.1109/EEM.2018.8470012

  60. Enevoldsen P, Sovacool BK (2016) Integrating power systems for remote island energy supply: lessons from Mykines, Faroe Islands. Renew Energy 85:642–648. https://doi.org/10.1016/j.renene.2015.06.065

    Article  Google Scholar 

  61. Umhvørvisstovan, Elfelagi\(\eth \) SEV, and Dansk Energi (2018) Orkugoymslur í Føroyum - yvirskipa\(\eth \) frágrei\(\eth \) ing, Umhvørvisstovan, Argir, Faroe Islands, Tech Rep [online]. Available: https://www.us.fo/Default.aspx?ID=14236 (visited on 03/18/2022)

  62. ORKA (2018) Gennemgang af energilagerteknologier, ORKA, Argir, Faroe Islands, Tech Rep [online]. Available: https://www.us.fo/Default.aspx?ID=14236 (visited on 03/18/2022)

  63. Dansk Energi (2017) Stabilitet og udbygning af elnettet, Dansk Energi, Copenhagen, Denmark, Tech Rep d2017-9194-0.31 [online]. Available: https://www.us.fo/Default.aspx?ID=14236 (visited on 03/18/2022)

  64. Hansen H, Nielsen T, Thomsen B, Andersen K (2018) Energilagring pøa Færøerne - Teknisk opsamlingsrapport, Dansk Energi, Copenhagen, Denmark, Tech Rep [online]. Available: https://www.us.fo/Default.aspx?ID=14236 (visited on 03/18/2022)

  65. ORKA (2018) Kabelforbindelse mellem Færøerne og nabonationer i Nordatlanten - Gennemgang af tidligere arbejde, ORKA, Argir, Faroe Islands, Tech Rep [online]. Available: https://www.us.fo/Defaul.aspx?ID=14236 (visited on 03/18/2022)

  66. Dansk Energi (2016) Høring vedrørende fremtidsscenarier for energisystemet pøa Færøerne, Dansk Energi, Copenhagen, Denmark, Tech Rep d2016- 8677-21.0 [online]. Available: https://www.us.fo/Default.aspx?ID=14236 (visited on 03/18/2022)

  67. Dansk Energi (2016) Scenarie notat, Dansk Energi, Copenhagen, Denmark, Tech Rep d2016-15912-1.0 [online]. Available: https://www.us.fo/Default.aspx?ID=14236 (visited on 03/18/2022)

  68. Dansk Energi (2017) Fleksibelt elforbrug pøa Færøerne, Dansk Energi, Copenhagen, Denmark, Tech Rep d2017-7274-6.0 [online]. Available: https://www.us.fo/Default.aspx?ID=14236 (visited on 03/18/2022)

  69. Ea Energy Analyses, Balancing a 100

    Google Scholar 

  70. Norconsult AS, 100

    Google Scholar 

  71. Dansk Energi (2017) Sammenfatning af scenarier for energilagring pøa Færøerne, Dansk Energi, Copenhagen, Denmark, Tech Rep d2017-155-3.0 [online]. Available: https://www.us.fo/Default.aspx?ID=14236 (visited on 03/18/2022)

  72. The Power Company SEV (2018) Notat om alternative produktionsformer, Elfelagi\(\eth \) SEV, Tórshavn, Faroe Islands, Tech Rep [online]. Available: https://www.us.fo/Default.aspx?ID=14236 (visited on 03/18/2022)

  73. Jar\(\eth \) feingi (2007) Indledende vurderinger af muligheden for at lægge elkabel fra Island til Færøerne, Hoyvík, Faroe Islands [online]. Available: https://www.us.fo/Default.aspx?ID=14236 (visited on 03/18/2022)

  74. Orkustofnun (2016) Norges Arktiske Universitet, Energistyrelsen, Jar\(\eth \) feingi, Shetland Islands Council, and Greenland Innovation Centre, North Atlantic Energy Network, Orkustofnun, Reykjavik, Iceland, Tech Rep [online]. Available: http://os.is/gogn/Skyrslur/OS-2016/North-Atlantic-Energy-Network-Report.pdf

  75. Egholm PE, Jakobsen F, Bendtsen B et al (2015) Action plan–report and Recommendations on the future electric energy system of the Faroe Islands. Tørshavn, Faroe Islands

    Google Scholar 

  76. Føroya Landsstýri (Government of the Faroe Islands) (2015) Samgonguskjali\(\eth \) 2015. Tórshavn, Faroe Islands

    Google Scholar 

  77. Wiese F, Bramstoft R, Koduvere H et al (2018) Balmorel open source energy system model. Energy Strategy Rev 20:26–34. https://doi.org/10.1016/j.esr.2018.01.003

    Article  Google Scholar 

  78. EA Energy Analyses (2018) Balmorel–user guide. EA Energy Analyses, Copenhagen, Denmark

    Google Scholar 

  79. Ravn H (2005) The Balmorel model structure, vol 2.12 Alpha [online]. Available: http://www.balmorel.com/Doc/BMS212A.pdf (visited on 10/03/2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helma Maria Tróndheim .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tróndheim, H.M. (2023). Expansion Planning Theory. In: Ensuring Supply Reliability and Grid Stability in a 100% Renewable Electricity Sector in the Faroe Islands. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-031-28368-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28368-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28367-3

  • Online ISBN: 978-3-031-28368-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics